The earthquake mitigation effect of hysteretic dampers is not only related to the number, stiffness, strength, deformation ability of dampers but also to the strength and stiffness of the structure. This paper studied...The earthquake mitigation effect of hysteretic dampers is not only related to the number, stiffness, strength, deformation ability of dampers but also to the strength and stiffness of the structure. This paper studied the condition that structures should be in when the hysteretic dampers mitigated seismic action most effectively and made appropriate numerical analysis to verify the effectiveness of theory derivation. The inelastic seismic responses were analyzed for the SDOF system that the shear strength ratio of the damper system was taken differently and the result showed that when the ratio was in the vicinity of the optimum strength ratio of the damper system, the displacement of the structure was minimum and the energy dissipation of dampers was maximum, which indicated that the dampers mitigated seismic action most effectively. The result also indicated that the hysteretic dampers had significant earthquake mitigation effect when the strength ratio β changed in a relatively wide range.展开更多
A new stochastic optimal control strategy for randomly excited quasi-integrable Hamiltonian systems using magneto-rheological (MR) dampers is proposed. The dynamic be- havior of an MR damper is characterized by the ...A new stochastic optimal control strategy for randomly excited quasi-integrable Hamiltonian systems using magneto-rheological (MR) dampers is proposed. The dynamic be- havior of an MR damper is characterized by the Bouc-Wen hysteretic model. The control force produced by the MR damper is separated into a passive part incorporated in the uncontrolled system and a semi-active part to be determined. The system combining the Bouc-Wen hysteretic force is converted into an equivalent non-hysteretic nonlinear stochastic control system. Then It?o stochastic di?erential equations are derived from the equivalent system by using the stochastic averaging method. A dynamical programming equation for the controlled di?usion processes is established based on the stochastic dynamical programming principle. The non-clipping nonlin- ear optimal control law is obtained for a certain performance index by minimizing the dynamical programming equation. Finally, an example is given to illustrate the application and e?ectiveness of the proposed control strategy.展开更多
A new method of robust damper design is presented for elastic-plastic multi-degree-of-freedom(MDOF)building structures under multi-level ground motions(GMs).This method realizes a design that is effective for various ...A new method of robust damper design is presented for elastic-plastic multi-degree-of-freedom(MDOF)building structures under multi-level ground motions(GMs).This method realizes a design that is effective for various levels of GMs.The robustness of a design is measured by an incremental dynamic analysis(IDA)curve and an ideal drift response curve(IDRC).The IDRC is a plot of the optimized maximum deformation under a constraint on the total damper quantity vs.the design level of the GMs.The total damper quantity corresponds to the total cost of the added dampers.First,a problem of generation of IDRCs is stated.Then,its solution algorithm,which consists of the sensitivity-based algorithm(SBA)and a local search method,is proposed.In the application of the SBA,the passive added dampers are removed sequentially under the specified-level GMs.On the other hand,the proposed local search method can search the optimal solutions for a constant total damper quantity under GMs’increased levels.In this way,combining these two algorithms enables the comprehensive search of the optimal solutions for various conditions of the status of the GMs and the total damper quantity.The influence of selecting the type of added dampers(oil,hysteretic,and so on)and the selection of the input GMs on the IDRCs are investigated.Finally,a robust optimal design problem is formulated,and a simple local search-based algorithm is proposed.A simple index using the IDRC and the IDA curve of the model is used as the objective function.It is demonstrated that the proposed algorithm works well in spite of its simplicity.展开更多
This paper presents the results of nonlinear finite element analyses conducted on stainless steel shear links. Stainless steels are attractive materials for seismic fuse device especially for corrosion-aware environme...This paper presents the results of nonlinear finite element analyses conducted on stainless steel shear links. Stainless steels are attractive materials for seismic fuse device especially for corrosion-aware environment such as coastal regions because they are highly corrosion resistant, have good ductility and toughness properties in combination with low maintenance requirements. This paper discusses the promising use ofAISI 316L stainless steel for shear links as seismic fuse devices. Hysteresis behaviors of four stainless steel shear link specimens under reversed cyclic loading were examined to assess their ultimate strength, plastic rotation and failure modes. The nonlinear finite element analysis results show that shear links made of AISI 316L stainless steel exhibit a high level of ductility. However, it is also found that because of large over-strength ratio associated with its strain hardening process, mixed shear and flexural failure modes were observed in stainless steel shear links compared with conventional steel shear links with the same length ratio. This raises the issue that proper design requirements such as length ratio, element compactness and stiffener spacing need to be determined to ensure the full development of the overall plastic rotation of the stainless steel shear links.展开更多
基金Sponsored by China Postdoctoral Science Foundation(Grant No2005037186) Heilongjiang Postdoctoral Science Foundation(Grant No2005LBH-Z05035)
文摘The earthquake mitigation effect of hysteretic dampers is not only related to the number, stiffness, strength, deformation ability of dampers but also to the strength and stiffness of the structure. This paper studied the condition that structures should be in when the hysteretic dampers mitigated seismic action most effectively and made appropriate numerical analysis to verify the effectiveness of theory derivation. The inelastic seismic responses were analyzed for the SDOF system that the shear strength ratio of the damper system was taken differently and the result showed that when the ratio was in the vicinity of the optimum strength ratio of the damper system, the displacement of the structure was minimum and the energy dissipation of dampers was maximum, which indicated that the dampers mitigated seismic action most effectively. The result also indicated that the hysteretic dampers had significant earthquake mitigation effect when the strength ratio β changed in a relatively wide range.
基金Project supported by the Zhejiang Provincial Natural Sciences Foundation (No. 101046) and the foundation fromHong Kong RGC (No. PolyU 5051/02E).
文摘A new stochastic optimal control strategy for randomly excited quasi-integrable Hamiltonian systems using magneto-rheological (MR) dampers is proposed. The dynamic be- havior of an MR damper is characterized by the Bouc-Wen hysteretic model. The control force produced by the MR damper is separated into a passive part incorporated in the uncontrolled system and a semi-active part to be determined. The system combining the Bouc-Wen hysteretic force is converted into an equivalent non-hysteretic nonlinear stochastic control system. Then It?o stochastic di?erential equations are derived from the equivalent system by using the stochastic averaging method. A dynamical programming equation for the controlled di?usion processes is established based on the stochastic dynamical programming principle. The non-clipping nonlin- ear optimal control law is obtained for a certain performance index by minimizing the dynamical programming equation. Finally, an example is given to illustrate the application and e?ectiveness of the proposed control strategy.
基金Part of the present work is supported by the Grant-in-Aid for Scientific Research(KAKENHI)of the Japan Society for the Promotion of Science(Nos.18H01584,JP20J20811)This support is greatly appreciated.
文摘A new method of robust damper design is presented for elastic-plastic multi-degree-of-freedom(MDOF)building structures under multi-level ground motions(GMs).This method realizes a design that is effective for various levels of GMs.The robustness of a design is measured by an incremental dynamic analysis(IDA)curve and an ideal drift response curve(IDRC).The IDRC is a plot of the optimized maximum deformation under a constraint on the total damper quantity vs.the design level of the GMs.The total damper quantity corresponds to the total cost of the added dampers.First,a problem of generation of IDRCs is stated.Then,its solution algorithm,which consists of the sensitivity-based algorithm(SBA)and a local search method,is proposed.In the application of the SBA,the passive added dampers are removed sequentially under the specified-level GMs.On the other hand,the proposed local search method can search the optimal solutions for a constant total damper quantity under GMs’increased levels.In this way,combining these two algorithms enables the comprehensive search of the optimal solutions for various conditions of the status of the GMs and the total damper quantity.The influence of selecting the type of added dampers(oil,hysteretic,and so on)and the selection of the input GMs on the IDRCs are investigated.Finally,a robust optimal design problem is formulated,and a simple local search-based algorithm is proposed.A simple index using the IDRC and the IDA curve of the model is used as the objective function.It is demonstrated that the proposed algorithm works well in spite of its simplicity.
文摘This paper presents the results of nonlinear finite element analyses conducted on stainless steel shear links. Stainless steels are attractive materials for seismic fuse device especially for corrosion-aware environment such as coastal regions because they are highly corrosion resistant, have good ductility and toughness properties in combination with low maintenance requirements. This paper discusses the promising use ofAISI 316L stainless steel for shear links as seismic fuse devices. Hysteresis behaviors of four stainless steel shear link specimens under reversed cyclic loading were examined to assess their ultimate strength, plastic rotation and failure modes. The nonlinear finite element analysis results show that shear links made of AISI 316L stainless steel exhibit a high level of ductility. However, it is also found that because of large over-strength ratio associated with its strain hardening process, mixed shear and flexural failure modes were observed in stainless steel shear links compared with conventional steel shear links with the same length ratio. This raises the issue that proper design requirements such as length ratio, element compactness and stiffener spacing need to be determined to ensure the full development of the overall plastic rotation of the stainless steel shear links.