Structures located in seismically active regions may be subjected to mainshock-aftershock(MSAS)sequences.present study selected two kinds of MSAS sequences,with one aftershock and two aftershocks,respectively.The af...Structures located in seismically active regions may be subjected to mainshock-aftershock(MSAS)sequences.present study selected two kinds of MSAS sequences,with one aftershock and two aftershocks,respectively.The aftershocksThe MSAS sequence with one aftershock exhibited a 10%to 30%hysteretic energy increase,whereas the MSAS sequence with two aftershocks presented a 20%to 40%hysteretic energy increase.Finally,a hysteretic energy prediction equation is proposed as a function of the vibration period,ductility value,and damping ratio to estimate hysteretic energy for mainshockaftershock sequences.展开更多
A procedure is proposed whereby input and hysteretic energy spectra developed for single-degree-of-freedom (SDOF) systems are applied to multi-degree-of-freedom (MDOF) steel moment resisting frames. The proposed p...A procedure is proposed whereby input and hysteretic energy spectra developed for single-degree-of-freedom (SDOF) systems are applied to multi-degree-of-freedom (MDOF) steel moment resisting frames. The proposed procedure is verified using four frames, viz., frame with three-, five-, seven- and nine-stories, each of which is subjected to the fault- normal and fault-parallel components of three actual earthquakes. A very good estimate for the three- and five-story frames, and a reasonably acceptable estimate for the seven-, and nine-story frames, have been obtained. A method for distributing the hysteretic energy over the frame height is also proposed. This distribution scheme allows for the determination of the energy demand component of a proposed energy-based seismic design (EBSD) procedure for each story. To address the capacity component of EBSD, a story-wise optimization design procedure is developed by utilizing the energy dissipating capacity from plastic hinge formation/rotation for these moment frames. The proposed EBSD procedure is demonstrated in the design of a three-story one-bay steel moment frame.展开更多
基金National Key R&D Program of China under Grant No.2017YFC1500602 and 2016YFC0701108the National Natural Science Foundation of China under Grant No.51322801 and 51708161the Outstanding Talents Jump Promotion Plan of Basic Research of Harbin Institute of Technology,China Postdoctoral Science Foundation under Grant No.2016M601430
文摘Structures located in seismically active regions may be subjected to mainshock-aftershock(MSAS)sequences.present study selected two kinds of MSAS sequences,with one aftershock and two aftershocks,respectively.The aftershocksThe MSAS sequence with one aftershock exhibited a 10%to 30%hysteretic energy increase,whereas the MSAS sequence with two aftershocks presented a 20%to 40%hysteretic energy increase.Finally,a hysteretic energy prediction equation is proposed as a function of the vibration period,ductility value,and damping ratio to estimate hysteretic energy for mainshockaftershock sequences.
文摘A procedure is proposed whereby input and hysteretic energy spectra developed for single-degree-of-freedom (SDOF) systems are applied to multi-degree-of-freedom (MDOF) steel moment resisting frames. The proposed procedure is verified using four frames, viz., frame with three-, five-, seven- and nine-stories, each of which is subjected to the fault- normal and fault-parallel components of three actual earthquakes. A very good estimate for the three- and five-story frames, and a reasonably acceptable estimate for the seven-, and nine-story frames, have been obtained. A method for distributing the hysteretic energy over the frame height is also proposed. This distribution scheme allows for the determination of the energy demand component of a proposed energy-based seismic design (EBSD) procedure for each story. To address the capacity component of EBSD, a story-wise optimization design procedure is developed by utilizing the energy dissipating capacity from plastic hinge formation/rotation for these moment frames. The proposed EBSD procedure is demonstrated in the design of a three-story one-bay steel moment frame.