Efficient bifunctional catalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are vital for rechargeable Zn-air batteries(ZABs).Herein,an oxygen-respirable sponge-like Co@C–O–Cs catalyst with ...Efficient bifunctional catalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are vital for rechargeable Zn-air batteries(ZABs).Herein,an oxygen-respirable sponge-like Co@C–O–Cs catalyst with oxygen-rich active sites was designed and constructed for both ORR and OER by a facile carbon dot-assisted strategy.The aerophilic triphase interface of Co@C–O–Cs cathode efficiently boosts oxygen diffusion and transfer.The theoretical calculations and experimental studies revealed that the Co–C–COC active sites can redistribute the local charge density and lower the reaction energy barrier.The Co@C–O–Cs catalyst displays superior bifunctional catalytic activities with a half-wave potential of 0.82 V for ORR and an ultralow overpotential of 294 mV at 10 mA cm^(−2) for OER.Moreover,it can drive the liquid ZABs with high peak power density(106.4 mW cm^(−2)),specific capacity(720.7 mAh g^(−1)),outstanding long-term cycle stability(over 750 cycles at 10 mA cm^(−2)),and exhibits excellent feasibility in flexible all-solid-state ZABs.These findings provide new insights into the rational design of efficient bifunctional oxygen catalysts in rechargeable metal-air batteries.展开更多
Ammonia borane(AB)is an excellent candidate for the chemical storage of hydrogen.However,its practical utilization for hydrogen production is hindered by the need for expensive noble-metal-based catalysts.Herein,we re...Ammonia borane(AB)is an excellent candidate for the chemical storage of hydrogen.However,its practical utilization for hydrogen production is hindered by the need for expensive noble-metal-based catalysts.Herein,we report Co-Co3O4 nanoparticles(NPs)facilely deposited on carbon dots(CDs)as a highly efficient,robust,and noble-metal-free catalyst for the hydrolysis of AB.The incorporation of the multiinterfaces between Co,Co3O4 NPs,and CDs endows this hybrid material with excellent catalytic activity(rB=6816 mLH2 min^-1 gCo^-1)exceeding that of previous non-noble-metal NP systems and even that of some noble-metal NP systems.A further mechanistic study suggests that these interfacial interactions can affect the electronic structures of interfacial atoms and provide abundant adsorption sites for AB and water molecules,resulting in a low energy barrier for the activation of reactive molecules and thus substantial improvement of the catalytic rate.展开更多
The microstructural characteristic of 1070AI matrix composites reinforced by 0.15 祄 AI2O3 particles whose volume fraction was 40% was investigated by TEM and HREM. The results showed that the interface between the ma...The microstructural characteristic of 1070AI matrix composites reinforced by 0.15 祄 AI2O3 particles whose volume fraction was 40% was investigated by TEM and HREM. The results showed that the interface between the matrix and reinforcements was clean and bonded well, without any interfacial reaction products. There were some preferential crystallographic orientation relationships between Al matrix and AI2O3 particle because of the lattice imperfection on the surface of Al2O3 particles.展开更多
Herein,a bottom-down design is presented to successfully fabricate ZIF-derived Co3O4,grown in situ on a one-dimensional(1D)α-MnO2 material,denoted as α-MnO2@Co3O4.The synergistic effect derived from the coupled inte...Herein,a bottom-down design is presented to successfully fabricate ZIF-derived Co3O4,grown in situ on a one-dimensional(1D)α-MnO2 material,denoted as α-MnO2@Co3O4.The synergistic effect derived from the coupled interface constructed betweenα-MnO2 and Co3O4 is responsible for the enhanced catalytic activity.The resultantα-MnO2@Co3O4 catalyst exhibits excellent catalytic activity at a T90%(temperature required to achieve a toluene conversion of 90%)of approximately 229℃,which is 47 and 28℃ lower than those of the pureα-MnO2 nanowire and Co3O4-b obtained via pyrolysis of ZIF-67,respectively.This activity is attributed to the increase in the number of surface-adsorbed oxygen species,which accelerate the oxygen mobility and enhance the redox pairs of Mn^4+/Mn^3+ and Co^2+/Co^3+.Moreover,the result of in situ diffuse reflectance infrared Fourier transform spectroscopy suggests that the gaseous oxygen could be more easily activated to adsorbed oxygen species on the surface of α-MnO2@Co3O4 than on that of α-MnO2.The catalytic reaction route of toluene oxidation over theα-MnO2@Co3O4 catalyst is as follows:toluene→benzoate species→alkanes containing oxygen functional group→CO2 and H2O.In addition,the α-MnO2@Co3O4 catalyst shows excellent stability and good water resistance for toluene oxidation.Furthermore,the preparation method can be extended to other 1D MnO2 materials.A new strategy for the development of high-performance catalysts of practical significance is provided.展开更多
The correlation between surface complexation at the SiO_(2)H_(2)O interface and quartz notation behavior was studied.Computer assisted calculations,using the programs SOLGASWATER,were adapted in order to con-struct di...The correlation between surface complexation at the SiO_(2)H_(2)O interface and quartz notation behavior was studied.Computer assisted calculations,using the programs SOLGASWATER,were adapted in order to con-struct distribution diagrams of surface speciation in the SiO_(2)-metal ion-H^(+) system in aqueous solutions.Equilib-rium constants for both surface and solution reactions were introduced in the composition matrix.Surface complexation,surface charge as well as notation results were compared and a good agreement was obtained.Furthermore,flotation mechanisms of quartz activation by common metal ions like Ca^(2+),Mg^(2+),Fe^(2+) are quantitatively discussed based on the surface reaction equilibrium constants.展开更多
The film forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles was investigated by the surface pressure-time isotherms, the surface pressure-trough area isotherms, Brewster angle microscopy...The film forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles was investigated by the surface pressure-time isotherms, the surface pressure-trough area isotherms, Brewster angle microscopy and transmission electron microscopy. It is found that the freshly prepared hydrosol of Fe2O3 nanoparticles is not stable. The surface pressure increases with the aging time and finally approaches a constant, and the smaller the concentration is, the smaller the surface pressure is stabilized at and the shorter the time the hydrosol reaching stable needs. The surface pressure also increases with compression until collapsed, and the longer the hydrosol is aged, the higher the collapsing pressure is. A uniform and compact film composed of nanoparticles with an average diameter of about 2-3 nm on the air-hydrosol interface is observed by Brewster angle microscope and transmission electron microscope.展开更多
Frequency dependent conductance measurements are implemented to investigate the interface states in Al2O3/A1GaN/GaN metal-oxide-semiconductor (MOS) structures. Two types of device structures, namely, the recessed ga...Frequency dependent conductance measurements are implemented to investigate the interface states in Al2O3/A1GaN/GaN metal-oxide-semiconductor (MOS) structures. Two types of device structures, namely, the recessed gate structure (RGS) and the normal gate structure (NGS), are studied in the experiment. Interface trap parameters includ-ing trap density Dit, trap time constant ιit, and trap state energy ET in both devices have been determined. Furthermore, the obtained results demonstrate that the gate recess process can induce extra traps with shallower energy levels at the Al2O3/AlGaN interface due to the damage on the surface of the AlGaN barrier layer resulting from reactive ion etching (RIE).展开更多
The distributions of traps and electron density in the interfaces between polyimide (PI) matrix and Al2O3 nanoparticles are researched using the isothermal decay current and the small-angle x-ray scattering (SAXS)...The distributions of traps and electron density in the interfaces between polyimide (PI) matrix and Al2O3 nanoparticles are researched using the isothermal decay current and the small-angle x-ray scattering (SAXS) tests. According to the electron density distribution for quasi two-phase mixture doped by spherical nanoparticles, the electron densities in the interfaces of PI/Al2O3 nanocomposite films are evaluated. The trap level density and carrier mobility in the interface are studied. The experimental results show that the distribution and the change rate of the electron density in the three layers of interface are different, indicating different trap distributions in the interface layers. There is a maximum trap level density in the second layer, where the maximum trap level density for the nanocomposite film doped by 25 wt% is 1.054 × 10^22 eV·m^-3 at 1.324eV, resulting in the carrier mobility reducing. In addition, both the thickness and the electron density of the nanocomposite film interface increase with the addition of the doped Al2O3 contents. Through the study on the trap level distribution in the interface, it is possible to further analyze the insulation mechanism and to improve the performance of nano-dielectric materials.展开更多
The transfer of Sr^2+ and Ba^2+ ion,facilitated by 18-crown-6 present in the aqueous phase,and of succinylcholine ion at w/nb interface were investigated by semi-differeniial cyclic voltammetry.A good polarographic cu...The transfer of Sr^2+ and Ba^2+ ion,facilitated by 18-crown-6 present in the aqueous phase,and of succinylcholine ion at w/nb interface were investigated by semi-differeniial cyclic voltammetry.A good polarographic curve of succinylcholine ion dissolved in water was obtained in the system of 0.01 mol/l LiCl(w)-0.01mol/l TBATPB(nb).The peak current is directly proportional to the concentration of SC^2+ ion.It can be used for the determination of SC and the detection limit is 1.05×10^-5mol/l,The apparent D^m and D^mb have been estimated.The transfer of Sr^2+ and of Ba^2+ at the interface are facilitated by 18-Crown-6 present in the aqueous phase and the peak current is directly proportional to the concentration of 18-Crown-6 in water.This method can be used for the determination of the complexing agent and for the stability constant of the complex formed in the aqueous phase.All the experimental results are in keeping with the theoretical.展开更多
The efficient utilization of visible light catalysts for organic reactions necessitates not only the effective separation of photogenerated electrons and holes to participate in the reaction,but also their ability to ...The efficient utilization of visible light catalysts for organic reactions necessitates not only the effective separation of photogenerated electrons and holes to participate in the reaction,but also their ability to form key intermediates with reactant molecules.The present study successfully synthesized a crusiform-like mesoporous structure of nitrogen-doped carbon-coated Cu_(2)O/Cu(Cu_(2)O/Cu/N-C)with a Cu_(2)O/dual electron acceptor interface using etched HKUST-1 as the precursor.A series of theoretical and experimental studies have demonstrated that the Cu_(2)O/Cu/N-C interface in the photocatalytic homo-coupling of terminal alkynes not only effectively enhances the separation of photogenerated electron−hole pairs,but also facilitates the formation of the key intermediate[Cu_(2)O/Cu/N-C]-phenylacetylide and promotes the rearrangement of its internal charges.As a result,the homo-coupling reaction can be effectively facilitated.The primary reason for the functional role of Cu_(2)O/Cu/N-C interface lies in the downward bending of energy band from Cu_(2)O to N-doped C layers,induced by the different work functions of Cu_(2)O,Cu and N-doped C layers.Consequently,Cu_(2)O/Cu/N-C photocatalysts demonstrate exceptional photocatalytic activity in the homo-coupling reaction of terminal alkynes under blue-light irradiation and air atmosphere.The present study presents a novel research methodology for the development of highly efficient visible light catalysts to facilitate organic reactions in future applications.展开更多
Non-interlayer liquid phase diffusion welding (China Patent) and laser welding methods for aluminum matrix composite are mainly described in this paper. In the non-interlayer liquid phase diffusion welding, the key pr...Non-interlayer liquid phase diffusion welding (China Patent) and laser welding methods for aluminum matrix composite are mainly described in this paper. In the non-interlayer liquid phase diffusion welding, the key processing parameters affecting the strength of joint is welding temperature. When temperature rises beyond solidus temperature, the bonded line vanishes. The strength of joint reaches the maximum and becomes constant when welding temperature is close to liquid phase temperature. Oxide film in the interface is no longer detected by SEM in the welded joint. With this kind of technique, particle reinforced aluminum matrix composite Al2 O3p/6061Al is welded successfully, and the joint strength is about 80% of the strength of composite (as-casted). In the laser welding, results indicate that because of the huge specific surface area of the reinforcement, the interfacial reaction between the matrix and the reinforcement is restrained intensively at certain laser power and pulsed laser beam. The laser pulse frequency directly affects the reinforcement segregation and the reinforcement distribution in the weld, so that the weldability of the composite could be improved by increasing the laser pulse frequency. The maximum strength of the weld can reach 70% of the strength of the parent.展开更多
All-solid-state lithium batteries(ASSLBs) based on sulfide solid-state electrolytes and high voltage layered oxide cathode are regarded as one of the most promising candidates for energy storage systems with high ener...All-solid-state lithium batteries(ASSLBs) based on sulfide solid-state electrolytes and high voltage layered oxide cathode are regarded as one of the most promising candidates for energy storage systems with high energy density and high safety.However,they usually suffer poor cathode/electrolyte interfacial stability,severely limiting their practical applications.In this work,a core-shell cathode with uniformly nanosized Li0.5La0.5TiO3(LLTO) electrolyte coating on LiNi0.5Co0.3Mn0.2O2(NCM532) is designed to improve the cathode/electrolyte interface stability.Nanosized LLTO coating layer not only significantly boosts interfacial migration of lithium ions,but also efficiently alleviates space-charge layer and inhibits the electrochemical decomposition of electrolyte.As a result,the assembled ASSLBs with high mass loading(9 mg cm-2)LLTO coated NCM532(LLTO@NCM532) cathode exhibit high initial capacity(135 mAh g^(-1)) and excellent cycling performance with high capacity retention(80% after 200 cycles) at 0.1 C and 25℃.This nanosized LLTO coating layer design provides a facile and effective strategy for constructing high performance ASSLBs with superior interfacial stability.展开更多
Although hydrophilic membranes are desired for reducing resistance to water permeation, hydrophilic surfaces are not used in the water-in-oil(W/O) membrane emulsification process because water spreads on the hydrophil...Although hydrophilic membranes are desired for reducing resistance to water permeation, hydrophilic surfaces are not used in the water-in-oil(W/O) membrane emulsification process because water spreads on the hydrophilic surface without forming droplets. Here, we report that a hydrophilic ceramic membrane can form a hydrophobic interface in diesel at a higher temperature;interestingly, the experiments show that the contact angle increases when the temperature rises. The hydrophilic membrane surface evolves into a hydrophobic interface, particularly near the boiling point of water, resulting in a water contact angle of 147.5° ± 1.2°. This work established a method for preparing W/O monodispersed emulsions by direct emulsification of hydrophilic ceramic membranes at a temperature close to the boiling point of water.Additionally, it made high flux of membrane emulsification of monodispersed W/O emulsions possible,which satisfied the industrial requirements of fluidized catalytic cracking in the petrochemical industry.展开更多
Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi...Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems.展开更多
基金supported by the National Key Research and Development Program of China(No.2019YFC1907801)National Natural Science Foundation of China(No.52174286)+1 种基金the Science and Technology Innovation Program of Hunan Province(2021RC3014)Innovation-Driven Project of Central South University(No.2020CX007)。
文摘Efficient bifunctional catalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are vital for rechargeable Zn-air batteries(ZABs).Herein,an oxygen-respirable sponge-like Co@C–O–Cs catalyst with oxygen-rich active sites was designed and constructed for both ORR and OER by a facile carbon dot-assisted strategy.The aerophilic triphase interface of Co@C–O–Cs cathode efficiently boosts oxygen diffusion and transfer.The theoretical calculations and experimental studies revealed that the Co–C–COC active sites can redistribute the local charge density and lower the reaction energy barrier.The Co@C–O–Cs catalyst displays superior bifunctional catalytic activities with a half-wave potential of 0.82 V for ORR and an ultralow overpotential of 294 mV at 10 mA cm^(−2) for OER.Moreover,it can drive the liquid ZABs with high peak power density(106.4 mW cm^(−2)),specific capacity(720.7 mAh g^(−1)),outstanding long-term cycle stability(over 750 cycles at 10 mA cm^(−2)),and exhibits excellent feasibility in flexible all-solid-state ZABs.These findings provide new insights into the rational design of efficient bifunctional oxygen catalysts in rechargeable metal-air batteries.
基金financially supported by the National Natural Science Foundation of China(21774041 and 51433003)the China Postdoctoral Science Foundation(2018M640681 and 2019T120632)。
文摘Ammonia borane(AB)is an excellent candidate for the chemical storage of hydrogen.However,its practical utilization for hydrogen production is hindered by the need for expensive noble-metal-based catalysts.Herein,we report Co-Co3O4 nanoparticles(NPs)facilely deposited on carbon dots(CDs)as a highly efficient,robust,and noble-metal-free catalyst for the hydrolysis of AB.The incorporation of the multiinterfaces between Co,Co3O4 NPs,and CDs endows this hybrid material with excellent catalytic activity(rB=6816 mLH2 min^-1 gCo^-1)exceeding that of previous non-noble-metal NP systems and even that of some noble-metal NP systems.A further mechanistic study suggests that these interfacial interactions can affect the electronic structures of interfacial atoms and provide abundant adsorption sites for AB and water molecules,resulting in a low energy barrier for the activation of reactive molecules and thus substantial improvement of the catalytic rate.
基金This research is supported by the National Natural Science Foundation of China (under Grant No.59771014 and No.50071019). The help of the National Advanced Material Open Research Lab of Tsinghua University is gratefully acknowledged.
文摘The microstructural characteristic of 1070AI matrix composites reinforced by 0.15 祄 AI2O3 particles whose volume fraction was 40% was investigated by TEM and HREM. The results showed that the interface between the matrix and reinforcements was clean and bonded well, without any interfacial reaction products. There were some preferential crystallographic orientation relationships between Al matrix and AI2O3 particle because of the lattice imperfection on the surface of Al2O3 particles.
文摘Herein,a bottom-down design is presented to successfully fabricate ZIF-derived Co3O4,grown in situ on a one-dimensional(1D)α-MnO2 material,denoted as α-MnO2@Co3O4.The synergistic effect derived from the coupled interface constructed betweenα-MnO2 and Co3O4 is responsible for the enhanced catalytic activity.The resultantα-MnO2@Co3O4 catalyst exhibits excellent catalytic activity at a T90%(temperature required to achieve a toluene conversion of 90%)of approximately 229℃,which is 47 and 28℃ lower than those of the pureα-MnO2 nanowire and Co3O4-b obtained via pyrolysis of ZIF-67,respectively.This activity is attributed to the increase in the number of surface-adsorbed oxygen species,which accelerate the oxygen mobility and enhance the redox pairs of Mn^4+/Mn^3+ and Co^2+/Co^3+.Moreover,the result of in situ diffuse reflectance infrared Fourier transform spectroscopy suggests that the gaseous oxygen could be more easily activated to adsorbed oxygen species on the surface of α-MnO2@Co3O4 than on that of α-MnO2.The catalytic reaction route of toluene oxidation over theα-MnO2@Co3O4 catalyst is as follows:toluene→benzoate species→alkanes containing oxygen functional group→CO2 and H2O.In addition,the α-MnO2@Co3O4 catalyst shows excellent stability and good water resistance for toluene oxidation.Furthermore,the preparation method can be extended to other 1D MnO2 materials.A new strategy for the development of high-performance catalysts of practical significance is provided.
文摘The correlation between surface complexation at the SiO_(2)H_(2)O interface and quartz notation behavior was studied.Computer assisted calculations,using the programs SOLGASWATER,were adapted in order to con-struct distribution diagrams of surface speciation in the SiO_(2)-metal ion-H^(+) system in aqueous solutions.Equilib-rium constants for both surface and solution reactions were introduced in the composition matrix.Surface complexation,surface charge as well as notation results were compared and a good agreement was obtained.Furthermore,flotation mechanisms of quartz activation by common metal ions like Ca^(2+),Mg^(2+),Fe^(2+) are quantitatively discussed based on the surface reaction equilibrium constants.
基金Funded by the National Natural Science Foundation of China (50672089)the Encouraging Foundation for the Scientific Research of the Excellent Young and Middleaged Scientists in Shandong Province(2006BS04034)
文摘The film forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles was investigated by the surface pressure-time isotherms, the surface pressure-trough area isotherms, Brewster angle microscopy and transmission electron microscopy. It is found that the freshly prepared hydrosol of Fe2O3 nanoparticles is not stable. The surface pressure increases with the aging time and finally approaches a constant, and the smaller the concentration is, the smaller the surface pressure is stabilized at and the shorter the time the hydrosol reaching stable needs. The surface pressure also increases with compression until collapsed, and the longer the hydrosol is aged, the higher the collapsing pressure is. A uniform and compact film composed of nanoparticles with an average diameter of about 2-3 nm on the air-hydrosol interface is observed by Brewster angle microscope and transmission electron microscope.
基金Project supported by the National Basic Research Program of China(Grant No.2011CBA00606)
文摘Frequency dependent conductance measurements are implemented to investigate the interface states in Al2O3/A1GaN/GaN metal-oxide-semiconductor (MOS) structures. Two types of device structures, namely, the recessed gate structure (RGS) and the normal gate structure (NGS), are studied in the experiment. Interface trap parameters includ-ing trap density Dit, trap time constant ιit, and trap state energy ET in both devices have been determined. Furthermore, the obtained results demonstrate that the gate recess process can induce extra traps with shallower energy levels at the Al2O3/AlGaN interface due to the damage on the surface of the AlGaN barrier layer resulting from reactive ion etching (RIE).
基金Supported by the National Natural Science Foundation of China under Grant Nos 51337002,51077028,51502063 and 51307046the Foundation of Harbin Science and Technology Bureau of Heilongjiang Province under Grant No RC2014QN017034
文摘The distributions of traps and electron density in the interfaces between polyimide (PI) matrix and Al2O3 nanoparticles are researched using the isothermal decay current and the small-angle x-ray scattering (SAXS) tests. According to the electron density distribution for quasi two-phase mixture doped by spherical nanoparticles, the electron densities in the interfaces of PI/Al2O3 nanocomposite films are evaluated. The trap level density and carrier mobility in the interface are studied. The experimental results show that the distribution and the change rate of the electron density in the three layers of interface are different, indicating different trap distributions in the interface layers. There is a maximum trap level density in the second layer, where the maximum trap level density for the nanocomposite film doped by 25 wt% is 1.054 × 10^22 eV·m^-3 at 1.324eV, resulting in the carrier mobility reducing. In addition, both the thickness and the electron density of the nanocomposite film interface increase with the addition of the doped Al2O3 contents. Through the study on the trap level distribution in the interface, it is possible to further analyze the insulation mechanism and to improve the performance of nano-dielectric materials.
文摘The transfer of Sr^2+ and Ba^2+ ion,facilitated by 18-crown-6 present in the aqueous phase,and of succinylcholine ion at w/nb interface were investigated by semi-differeniial cyclic voltammetry.A good polarographic curve of succinylcholine ion dissolved in water was obtained in the system of 0.01 mol/l LiCl(w)-0.01mol/l TBATPB(nb).The peak current is directly proportional to the concentration of SC^2+ ion.It can be used for the determination of SC and the detection limit is 1.05×10^-5mol/l,The apparent D^m and D^mb have been estimated.The transfer of Sr^2+ and of Ba^2+ at the interface are facilitated by 18-Crown-6 present in the aqueous phase and the peak current is directly proportional to the concentration of 18-Crown-6 in water.This method can be used for the determination of the complexing agent and for the stability constant of the complex formed in the aqueous phase.All the experimental results are in keeping with the theoretical.
基金supported by the Xuzhou Key Research and Development Program(Social Development)(No.KC23298)the National Natural Science Foundation of China(No.22271122)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20211549)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_2903).
文摘The efficient utilization of visible light catalysts for organic reactions necessitates not only the effective separation of photogenerated electrons and holes to participate in the reaction,but also their ability to form key intermediates with reactant molecules.The present study successfully synthesized a crusiform-like mesoporous structure of nitrogen-doped carbon-coated Cu_(2)O/Cu(Cu_(2)O/Cu/N-C)with a Cu_(2)O/dual electron acceptor interface using etched HKUST-1 as the precursor.A series of theoretical and experimental studies have demonstrated that the Cu_(2)O/Cu/N-C interface in the photocatalytic homo-coupling of terminal alkynes not only effectively enhances the separation of photogenerated electron−hole pairs,but also facilitates the formation of the key intermediate[Cu_(2)O/Cu/N-C]-phenylacetylide and promotes the rearrangement of its internal charges.As a result,the homo-coupling reaction can be effectively facilitated.The primary reason for the functional role of Cu_(2)O/Cu/N-C interface lies in the downward bending of energy band from Cu_(2)O to N-doped C layers,induced by the different work functions of Cu_(2)O,Cu and N-doped C layers.Consequently,Cu_(2)O/Cu/N-C photocatalysts demonstrate exceptional photocatalytic activity in the homo-coupling reaction of terminal alkynes under blue-light irradiation and air atmosphere.The present study presents a novel research methodology for the development of highly efficient visible light catalysts to facilitate organic reactions in future applications.
基金supported by the National Natural Science Foundation of China(No.50171025)open project of foundation of National Key Laboratory of Metal Matrix Composite,Shanghai Jiaotong University
文摘Non-interlayer liquid phase diffusion welding (China Patent) and laser welding methods for aluminum matrix composite are mainly described in this paper. In the non-interlayer liquid phase diffusion welding, the key processing parameters affecting the strength of joint is welding temperature. When temperature rises beyond solidus temperature, the bonded line vanishes. The strength of joint reaches the maximum and becomes constant when welding temperature is close to liquid phase temperature. Oxide film in the interface is no longer detected by SEM in the welded joint. With this kind of technique, particle reinforced aluminum matrix composite Al2 O3p/6061Al is welded successfully, and the joint strength is about 80% of the strength of composite (as-casted). In the laser welding, results indicate that because of the huge specific surface area of the reinforcement, the interfacial reaction between the matrix and the reinforcement is restrained intensively at certain laser power and pulsed laser beam. The laser pulse frequency directly affects the reinforcement segregation and the reinforcement distribution in the weld, so that the weldability of the composite could be improved by increasing the laser pulse frequency. The maximum strength of the weld can reach 70% of the strength of the parent.
基金supported by the National Natural Science Foundation of China (51575030, 51532002 and 51872027)Natural Science Foundation of Beijing Municipality (L172023)。
文摘All-solid-state lithium batteries(ASSLBs) based on sulfide solid-state electrolytes and high voltage layered oxide cathode are regarded as one of the most promising candidates for energy storage systems with high energy density and high safety.However,they usually suffer poor cathode/electrolyte interfacial stability,severely limiting their practical applications.In this work,a core-shell cathode with uniformly nanosized Li0.5La0.5TiO3(LLTO) electrolyte coating on LiNi0.5Co0.3Mn0.2O2(NCM532) is designed to improve the cathode/electrolyte interface stability.Nanosized LLTO coating layer not only significantly boosts interfacial migration of lithium ions,but also efficiently alleviates space-charge layer and inhibits the electrochemical decomposition of electrolyte.As a result,the assembled ASSLBs with high mass loading(9 mg cm-2)LLTO coated NCM532(LLTO@NCM532) cathode exhibit high initial capacity(135 mAh g^(-1)) and excellent cycling performance with high capacity retention(80% after 200 cycles) at 0.1 C and 25℃.This nanosized LLTO coating layer design provides a facile and effective strategy for constructing high performance ASSLBs with superior interfacial stability.
基金the support from the National Key Research and Development Program of China (2021YFB3801303)the National Natural Science Foundation of China (21838005, 21921006)the Key Scientific Research and Development Projects of Jiangsu Province (BE201800901)。
文摘Although hydrophilic membranes are desired for reducing resistance to water permeation, hydrophilic surfaces are not used in the water-in-oil(W/O) membrane emulsification process because water spreads on the hydrophilic surface without forming droplets. Here, we report that a hydrophilic ceramic membrane can form a hydrophobic interface in diesel at a higher temperature;interestingly, the experiments show that the contact angle increases when the temperature rises. The hydrophilic membrane surface evolves into a hydrophobic interface, particularly near the boiling point of water, resulting in a water contact angle of 147.5° ± 1.2°. This work established a method for preparing W/O monodispersed emulsions by direct emulsification of hydrophilic ceramic membranes at a temperature close to the boiling point of water.Additionally, it made high flux of membrane emulsification of monodispersed W/O emulsions possible,which satisfied the industrial requirements of fluidized catalytic cracking in the petrochemical industry.
基金supported by the National Natural Science Foundation of China(52172239)Project of State Key Laboratory of Environment-Friendly Energy Materials(SWUST,Grant Nos.22fksy23 and 18ZD320304)+3 种基金the Frontier Project of Chengdu Tianfu New Area Institute(SWUST,Grand No.2022ZY017)Chongqing Talents:Exceptional Young Talents Project(Grant No.CQYC201905041)Natural Science Foundation of Chongqing China(Grant No.cstc2021jcyj-jqX0031)Interdiscipline Team Project under auspices of“Light of West”Program in Chinese Academy of Sciences(Grant No.xbzg-zdsys-202106).
文摘Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems.