期刊文献+
共找到547,262篇文章
< 1 2 250 >
每页显示 20 50 100
Activation Redistribution Based Hybrid Asymmetric Quantization Method of Neural Networks 被引量:1
1
作者 Lu Wei Zhong Ma Chaojie Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期981-1000,共20页
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd... The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization. 展开更多
关键词 qUANTIZATION neural network hybrid asymmetric ACCURACY
下载PDF
Insights into microbiota community dynamics and flavor development mechanism during golden pomfret(Trachinotus ovatus)fermentation based on single-molecule real-time sequencing and molecular networking analysis 被引量:2
2
作者 Yueqi Wang Qian Chen +5 位作者 Huan Xiang Dongxiao Sun-Waterhouse Shengjun Chen Yongqiang Zhao Laihao Li Yanyan Wu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期101-114,共14页
Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the ... Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products. 展开更多
关键词 Fermented golden pomfret Microbiota community Volatile compound Co-occurrence network Metabolic pathway
下载PDF
Protective mechanism of quercetin in alleviating sepsis-related acute respiratory distress syndrome based on network pharmacology and in vitro experiments 被引量:1
3
作者 Weichao Ding Wei Zhang +7 位作者 Juan Chen Mengmeng Wang Yi Ren Jing Feng Xiaoqin Han Xiaohang Ji Shinan Nie Zhaorui Sun 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2024年第2期111-120,共10页
BACKGROUND:Sepsis-related acute respiratory distress syndrome(ARDS)has a high mortality rate,and no effective treatment is available currently.Quercetin is a natural plant product with many pharmacological activities,... BACKGROUND:Sepsis-related acute respiratory distress syndrome(ARDS)has a high mortality rate,and no effective treatment is available currently.Quercetin is a natural plant product with many pharmacological activities,such as antioxidative,anti-apoptotic,and anti-inflammatory effects.This study aimed to elucidate the protective mechanism of quercetin against sepsis-related ARDS.METHODS:In this study,network pharmacology and in vitro experiments were used to investigate the underlying mechanisms of quercetin against sepsis-related ARDS.Core targets and signaling pathways of quercetin against sepsis-related ARDS were screened and were verified by in vitro experiments.RESULTS:A total of 4,230 targets of quercetin,360 disease targets of sepsis-related ARDS,and 211 intersection targets were obtained via database screening.Among the 211 intersection targets,interleukin-6(IL-6),tumor necrosis factor(TNF),albumin(ALB),AKT serine/threonine kinase 1(AKT1),and interleukin-1β(IL-1β)were identified as the core targets.A Gene Ontology(GO)enrichment analysis revealed 894 genes involved in the inflammatory response,apoptosis regulation,and response to hypoxia.Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis identified 106 pathways.After eliminating and generalizing,the hypoxia-inducible factor-1(HIF-1),TNF,nuclear factor-κB(NF-κB),and nucleotide-binding and oligomerization domain(NOD)-like receptor signaling pathways were identified.Molecular docking revealed that quercetin had good binding activity with the core targets.Moreover,quercetin blocked the HIF-1,TNF,NF-κB,and NODlike receptor signaling pathways in lipopolysaccharide(LPS)-induced murine alveolar macrophage(MH-S)cells.It also suppressed the inflammatory response,oxidative reactions,and cell apoptosis.CONCLUSION:Quercetin ameliorates sepsis-related ARDS by binding to its core targets and blocking the HIF-1,TNF,NF-κB,and NOD-like receptor signaling pathways to reduce inflammation,cell apoptosis,and oxidative stress. 展开更多
关键词 qUERCETIN Sepsis-related acute respiratory distress syndrome network pharmacology
下载PDF
Robot-Oriented 6G Satellite-UAV Networks: Requirements, Paradigm Shifts, and Case Studies 被引量:1
4
作者 Peng Wei Wei Feng +2 位作者 Yunfei Chen Ning Ge Wei Xiang 《China Communications》 SCIE CSCD 2024年第2期74-84,共11页
Networked robots can perceive their surroundings, interact with each other or humans,and make decisions to accomplish specified tasks in remote/hazardous/complex environments. Satelliteunmanned aerial vehicle(UAV) net... Networked robots can perceive their surroundings, interact with each other or humans,and make decisions to accomplish specified tasks in remote/hazardous/complex environments. Satelliteunmanned aerial vehicle(UAV) networks can support such robots by providing on-demand communication services. However, under traditional open-loop communication paradigm, the network resources are usually divided into user-wise mostly-independent links,via ignoring the task-level dependency of robot collaboration. Thus, it is imperative to develop a new communication paradigm, taking into account the highlevel content and values behind, to facilitate multirobot operation. Inspired by Wiener’s Cybernetics theory, this article explores a closed-loop communication paradigm for the robot-oriented satellite-UAV network. This paradigm turns to handle group-wise structured links, so as to allocate resources in a taskoriented manner. It could also exploit the mobility of robots to liberate the network from full coverage,enabling new orchestration between network serving and positive mobility control of robots. Moreover,the integration of sensing, communications, computing and control would enlarge the benefit of this new paradigm. We present a case study for joint mobile edge computing(MEC) offloading and mobility control of robots, and finally outline potential challenges and open issues. 展开更多
关键词 closed-loop communication mobility control satellite-UAV network structured resource allocation
下载PDF
Network traffic classification:Techniques,datasets,and challenges 被引量:1
5
作者 Ahmad Azab Mahmoud Khasawneh +2 位作者 Saed Alrabaee Kim-Kwang Raymond Choo Maysa Sarsour 《Digital Communications and Networks》 SCIE CSCD 2024年第3期676-692,共17页
In network traffic classification,it is important to understand the correlation between network traffic and its causal application,protocol,or service group,for example,in facilitating lawful interception,ensuring the... In network traffic classification,it is important to understand the correlation between network traffic and its causal application,protocol,or service group,for example,in facilitating lawful interception,ensuring the quality of service,preventing application choke points,and facilitating malicious behavior identification.In this paper,we review existing network classification techniques,such as port-based identification and those based on deep packet inspection,statistical features in conjunction with machine learning,and deep learning algorithms.We also explain the implementations,advantages,and limitations associated with these techniques.Our review also extends to publicly available datasets used in the literature.Finally,we discuss existing and emerging challenges,as well as future research directions. 展开更多
关键词 network classification Machine learning Deep learning Deep packet inspection Traffic monitoring
下载PDF
Rock mass quality prediction on tunnel faces with incomplete multi-source dataset via tree-augmented naive Bayesian network 被引量:1
6
作者 Hongwei Huang Chen Wu +3 位作者 Mingliang Zhou Jiayao Chen Tianze Han Le Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期323-337,共15页
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita... Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality. 展开更多
关键词 Rock mass quality Tunnel faces Incomplete multi-source dataset Improved Swin Transformer Bayesian networks
下载PDF
Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts 被引量:1
7
作者 Mengmeng SONG Dazhi YANG +7 位作者 Sebastian LERCH Xiang'ao XIA Gokhan Mert YAGLI Jamie M.BRIGHT Yanbo SHEN Bai LIU Xingli LIU Martin Janos MAYER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1417-1437,共21页
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil... Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks. 展开更多
关键词 ensemble weather forecasting forecast calibration non-crossing quantile regression neural network CORP reliability diagram POST-PROCESSING
下载PDF
Development of a convolutional neural network based geomechanical upscaling technique for heterogeneous geological reservoir 被引量:1
8
作者 Zhiwei Ma Xiaoyan Ou Bo Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2111-2125,共15页
Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and e... Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations. 展开更多
关键词 Upscaling Lithological heterogeneity Convolutional neural network(CNN) Anisotropic shear strength Nonlinear stressestrain behavior
下载PDF
Improved Double Deep Q Network Algorithm Based on Average Q-Value Estimation and Reward Redistribution for Robot Path Planning
9
作者 Yameng Yin Lieping Zhang +3 位作者 Xiaoxu Shi Yilin Wang Jiansheng Peng Jianchu Zou 《Computers, Materials & Continua》 SCIE EI 2024年第11期2769-2790,共22页
By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning... By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of mobile robots.However,the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of high-quality data.Targeting those problems,an improved DDQN algorithm based on average Q-value estimation and reward redistribution was proposed.First,to enhance the precision of the target Q-value,the average of multiple previously learned Q-values from the target Q network is used to replace the single Q-value from the current target Q network.Next,a reward redistribution mechanism is designed to overcome the sparse reward problem by adjusting the final reward of each action using the round reward from trajectory information.Additionally,a reward-prioritized experience selection method is introduced,which ranks experience samples according to reward values to ensure frequent utilization of high-quality data.Finally,simulation experiments are conducted to verify the effectiveness of the proposed algorithm in fixed-position scenario and random environments.The experimental results show that compared to the traditional DDQN algorithm,the proposed algorithm achieves shorter average running time,higher average return and fewer average steps.The performance of the proposed algorithm is improved by 11.43%in the fixed scenario and 8.33%in random environments.It not only plans economic and safe paths but also significantly improves efficiency and generalization in path planning,making it suitable for widespread application in autonomous navigation and industrial automation. 展开更多
关键词 Double Deep q network path planning average q-value estimation reward redistribution mechanism reward-prioritized experience selection method
下载PDF
Verifying hierarchical network nonlocality in general quantum networks
10
作者 杨舒媛 侯晋川 贺衎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期199-208,共10页
Recently, a class of innovative notions on quantum network nonlocality(QNN), called full quantum network nonlocality(FQNN), have been proposed in Phys. Rev. Lett. 128 010403(2022). As the generalization of full networ... Recently, a class of innovative notions on quantum network nonlocality(QNN), called full quantum network nonlocality(FQNN), have been proposed in Phys. Rev. Lett. 128 010403(2022). As the generalization of full network nonlocality(FNN), l-level quantum network nonlocality(l-QNN) was defined in arxiv. 2306.15717 quant-ph(2024). FQNN is a NN that can be generated only from a network with all sources being non-classical. This is beyond the existing standard network nonlocality, which may be generated from a network with only a non-classical source. One of the challenging tasks is to establish corresponding Bell-like inequalities to demonstrate the FQNN or l-QNN. Up to now, the inequality criteria for FQNN and l-QNN have only been established for star and chain networks. In this paper, we devote ourselves to establishing Bell-like inequalities for networks with more complex structures. Note that star and chain networks are special kinds of tree-shaped networks. We first establish the Bell-like inequalities for verifying l-QNN in k-forked tree-shaped networks. Such results generalize the existing inequalities for star and chain networks. Furthermore, we find the Bell-like inequality criteria for l-QNN for general acyclic and cyclic networks. Finally, we discuss the demonstration of l-QNN in the well-known butterfly networks. 展开更多
关键词 full network nonlocality hierarchical network nonlocality tree network
下载PDF
Assessment of earthquake location uncertainties for the design of local seismic networks
11
作者 Antonio Fuggi Simone Re +3 位作者 Giorgio Tango Sergio Del Gaudio Alessandro Brovelli Giorgio Cassiani 《Earthquake Science》 2024年第5期415-433,共19页
The ability to estimate earthquake source locations,along with the appraisal of relevant uncertainties,is paramount in monitoring both natural and human-induced micro-seismicity.For this purpose,a monitoring network m... The ability to estimate earthquake source locations,along with the appraisal of relevant uncertainties,is paramount in monitoring both natural and human-induced micro-seismicity.For this purpose,a monitoring network must be designed to minimize the location errors introduced by geometrically unbalanced networks.In this study,we first review different sources of errors relevant to the localization of seismic events,how they propagate through localization algorithms,and their impact on outcomes.We then propose a quantitative method,based on a Monte Carlo approach,to estimate the uncertainty in earthquake locations that is suited to the design,optimization,and assessment of the performance of a local seismic monitoring network.To illustrate the performance of the proposed approach,we analyzed the distribution of the localization uncertainties and their related dispersion for a highly dense grid of theoretical hypocenters in both the horizontal and vertical directions using an actual monitoring network layout.The results expand,quantitatively,the qualitative indications derived from purely geometrical parameters(azimuthal gap(AG))and classical detectability maps.The proposed method enables the systematic design,optimization,and evaluation of local seismic monitoring networks,enhancing monitoring accuracy in areas proximal to hydrocarbon production,geothermal fields,underground natural gas storage,and other subsurface activities.This approach aids in the accurate estimation of earthquake source locations and their associated uncertainties,which are crucial for assessing and mitigating seismic risks,thereby enabling the implementation of proactive measures to minimize potential hazards.From an operational perspective,reliably estimating location accuracy is crucial for evaluating the position of seismogenic sources and assessing possible links between well activities and the onset of seismicity. 展开更多
关键词 network design earthquake localization DETECTABILITY localization uncertainties local seismic network
下载PDF
Artificial Immune Detection for Network Intrusion Data Based on Quantitative Matching Method
12
作者 CaiMing Liu Yan Zhang +1 位作者 Zhihui Hu Chunming Xie 《Computers, Materials & Continua》 SCIE EI 2024年第2期2361-2389,共29页
Artificial immune detection can be used to detect network intrusions in an adaptive approach and proper matching methods can improve the accuracy of immune detection methods.This paper proposes an artificial immune de... Artificial immune detection can be used to detect network intrusions in an adaptive approach and proper matching methods can improve the accuracy of immune detection methods.This paper proposes an artificial immune detection model for network intrusion data based on a quantitative matching method.The proposed model defines the detection process by using network data and decimal values to express features and artificial immune mechanisms are simulated to define immune elements.Then,to improve the accuracy of similarity calculation,a quantitative matching method is proposed.The model uses mathematical methods to train and evolve immune elements,increasing the diversity of immune recognition and allowing for the successful detection of unknown intrusions.The proposed model’s objective is to accurately identify known intrusions and expand the identification of unknown intrusions through signature detection and immune detection,overcoming the disadvantages of traditional methods.The experiment results show that the proposed model can detect intrusions effectively.It has a detection rate of more than 99.6%on average and a false alarm rate of 0.0264%.It outperforms existing immune intrusion detection methods in terms of comprehensive detection performance. 展开更多
关键词 Immune detection network intrusion network data signature detection quantitative matching method
下载PDF
Security Monitoring and Management for the Network Services in the Orchestration of SDN-NFV Environment Using Machine Learning Techniques
13
作者 Nasser Alshammari Shumaila Shahzadi +7 位作者 Saad Awadh Alanazi Shahid Naseem Muhammad Anwar Madallah Alruwaili Muhammad Rizwan Abid Omar Alruwaili Ahmed Alsayat Fahad Ahmad 《Computer Systems Science & Engineering》 2024年第2期363-394,共32页
Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified ne... Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified network lifecycle,and policies management.Network vulnerabilities try to modify services provided by Network Function Virtualization MANagement and Orchestration(NFV MANO),and malicious attacks in different scenarios disrupt the NFV Orchestrator(NFVO)and Virtualized Infrastructure Manager(VIM)lifecycle management related to network services or individual Virtualized Network Function(VNF).This paper proposes an anomaly detection mechanism that monitors threats in NFV MANO and manages promptly and adaptively to implement and handle security functions in order to enhance the quality of experience for end users.An anomaly detector investigates these identified risks and provides secure network services.It enables virtual network security functions and identifies anomalies in Kubernetes(a cloud-based platform).For training and testing purpose of the proposed approach,an intrusion-containing dataset is used that hold multiple malicious activities like a Smurf,Neptune,Teardrop,Pod,Land,IPsweep,etc.,categorized as Probing(Prob),Denial of Service(DoS),User to Root(U2R),and Remote to User(R2L)attacks.An anomaly detector is anticipated with the capabilities of a Machine Learning(ML)technique,making use of supervised learning techniques like Logistic Regression(LR),Support Vector Machine(SVM),Random Forest(RF),Naïve Bayes(NB),and Extreme Gradient Boosting(XGBoost).The proposed framework has been evaluated by deploying the identified ML algorithm on a Jupyter notebook in Kubeflow to simulate Kubernetes for validation purposes.RF classifier has shown better outcomes(99.90%accuracy)than other classifiers in detecting anomalies/intrusions in the containerized environment. 展开更多
关键词 Software defined network network function virtualization network function virtualization management and orchestration virtual infrastructure manager virtual network function Kubernetes Kubectl artificial intelligence machine learning
下载PDF
Hybrid millimeter wave heterogeneous networks with spatially correlated user equipment
14
作者 Arif Ullah Ziaul Haq Abbas +2 位作者 Ghulam Abbas Fazal Muhammad Jae-Mo Kang 《Digital Communications and Networks》 SCIE CSCD 2024年第4期904-917,共14页
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high d... In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data rate.We consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)density.Such user centric deployment of mmWave SBSs inevitably incurs correlation between UE and SBSs.For a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave communication.By using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power association.For UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy efficiency.We also provide Monte Carlo simulation results to validate the accuracy of the derived expressions.Furthermore,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave HCNets.Our results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots. 展开更多
关键词 Downlink cell association Heterogeneous cellular networks Integrated sub-6GHz and mmWave networks Millimeter wave communications Poisson cluster process
下载PDF
Dynamic Routing of Multiple QoS-Required Flows in Cloud-Edge Autonomous Multi-Domain Data Center Networks
15
作者 Shiyan Zhang Ruohan Xu +3 位作者 Zhangbo Xu Cenhua Yu Yuyang Jiang Yuting Zhao 《Computers, Materials & Continua》 SCIE EI 2024年第2期2287-2308,共22页
The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections an... The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections and convergence.In this paper,with the optimization objective of maximizing network utility while ensuring flows performance-centric weighted fairness,this paper designs a reinforcement learning-based cloud-edge autonomous multi-domain data center network architecture that achieves single-domain autonomy and multi-domain collaboration.Due to the conflict between the utility of different flows,the bandwidth fairness allocation problem for various types of flows is formulated by considering different defined reward functions.Regarding the tradeoff between fairness and utility,this paper deals with the corresponding reward functions for the cases where the flows undergo abrupt changes and smooth changes in the flows.In addition,to accommodate the Quality of Service(QoS)requirements for multiple types of flows,this paper proposes a multi-domain autonomous routing algorithm called LSTM+MADDPG.Introducing a Long Short-Term Memory(LSTM)layer in the actor and critic networks,more information about temporal continuity is added,further enhancing the adaptive ability changes in the dynamic network environment.The LSTM+MADDPG algorithm is compared with the latest reinforcement learning algorithm by conducting experiments on real network topology and traffic traces,and the experimental results show that LSTM+MADDPG improves the delay convergence speed by 14.6%and delays the start moment of packet loss by 18.2%compared with other algorithms. 展开更多
关键词 MULTI-DOMAIN data center networks AUTONOMOUS ROUTING
下载PDF
Extended Lorenz majorization and frequencies of distances in an undirected network
16
作者 Leo Egghe 《Journal of Data and Information Science》 CSCD 2024年第1期1-10,共10页
Purpose:To contribute to the study of networks and graphs.Design/methodology/approach:We apply standard mathematical thinking.Findings:We show that the distance distribution in an undirected network Lorenz majorizes t... Purpose:To contribute to the study of networks and graphs.Design/methodology/approach:We apply standard mathematical thinking.Findings:We show that the distance distribution in an undirected network Lorenz majorizes the one of a chain.As a consequence,the average and median distances in any such network are smaller than or equal to those of a chain.Research limitations:We restricted our investigations to undirected,unweighted networks.Practical implications:We are convinced that these results are useful in the study of small worlds and the so-called six degrees of separation property.Originality/value:To the best of our knowledge our research contains new network results,especially those related to frequencies of distances. 展开更多
关键词 majorization Lorenz curves networkS shortest path distance GRAPHS
下载PDF
Transferable adversarial slow feature extraction network for few-shot quality prediction in coal-to-ethylene glycol process
17
作者 Cheng Yang Chao Jiang +2 位作者 Guo Yu Jun Li Cuimei Bo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期258-271,共14页
In the coal-to-ethylene glycol(CTEG)process,precisely estimating quality variables is crucial for process monitoring,optimization,and control.A significant challenge in this regard is relying on offline laboratory ana... In the coal-to-ethylene glycol(CTEG)process,precisely estimating quality variables is crucial for process monitoring,optimization,and control.A significant challenge in this regard is relying on offline laboratory analysis to obtain these variables,which often incurs substantial monetary costs and significant time delays.The resulting few-shot learning scenarios present a hurdle to the efficient development of predictive models.To address this issue,our study introduces the transferable adversarial slow feature extraction network(TASF-Net),an innovative approach designed specifically for few-shot quality prediction in the CTEG process.TASF-Net uniquely integrates the slowness principle with a deep Bayesian framework,effectively capturing the nonlinear and inertial characteristics of the CTEG process.Additionally,the model employs a variable attention mechanism to identify quality-related input variables adaptively at each time step.A key strength of TASF-Net lies in its ability to navigate the complex measurement noise,outliers,and system interference typical in CTEG data.Adversarial learning strategy using a min-max game is adopted to improve its robustness and ability to model irregular industrial data accurately and significantly.Furthermore,an incremental refining transfer learning framework is designed to further improve few-shot prediction performance achieved by transferring knowledge from the pretrained model on the source domain to the target domain.The effectiveness and superiority of TASF-Net have been empirically validated using a real-world CTEG dataset.Compared with some state-of-the-art methods,TASF-Net demonstrates exceptional capability in addressing the intricate challenges for few-shot quality prediction in the CTEG process. 展开更多
关键词 Chemical process Neural networks Slowness principle Transfer learning Prediction
下载PDF
Epileptic brain network mechanisms and neuroimaging techniques for the brain network
18
作者 Yi Guo Zhonghua Lin +1 位作者 Zhen Fan Xin Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2637-2648,共12页
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d... Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions. 展开更多
关键词 electrophysiological techniques EPILEPSY functional brain network functional magnetic resonance imaging functional near-infrared spectroscopy machine leaning molecular imaging neuroimaging techniques structural brain network virtual epileptic models
下载PDF
Quick Weighing of Passing Vehicles Using the Transfer-Learning-Enhanced Convolutional Neural Network
19
作者 Wangchen Yan Jinbao Yang Xin Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2507-2524,共18页
Transfer learning could reduce the time and resources required by the training of new models and be therefore important for generalized applications of the trainedmachine learning algorithms.In this study,a transfer l... Transfer learning could reduce the time and resources required by the training of new models and be therefore important for generalized applications of the trainedmachine learning algorithms.In this study,a transfer learningenhanced convolutional neural network(CNN)was proposed to identify the gross weight and the axle weight of moving vehicles on the bridge.The proposed transfer learning-enhanced CNN model was expected to weigh different bridges based on a small amount of training datasets and provide high identification accuracy.First of all,a CNN algorithm for bridge weigh-in-motion(B-WIM)technology was proposed to identify the axle weight and the gross weight of the typical two-axle,three-axle,and five-axle vehicles as they crossed the bridge with different loading routes and speeds.Then,the pre-trained CNN model was transferred by fine-tuning to weigh themoving vehicle on another bridge.Finally,the identification accuracy and the amount of training data required were compared between the two CNN models.Results showed that the pre-trained CNN model using transfer learning for B-WIM technology could be successfully used for the identification of the axle weight and the gross weight for moving vehicles on another bridge while reducing the training data by 63%.Moreover,the recognition accuracy of the pre-trained CNN model using transfer learning was comparable to that of the original model,showing its promising potentials in the actual applications. 展开更多
关键词 Bridge weigh-in-motion transfer learning convolutional neural network
下载PDF
Noise-tolerate and adaptive coefficient zeroing neural network for solving dynamic matrix square root
20
作者 Xiuchun Xiao Chengze Jiang +1 位作者 Qixiang Mei Yudong Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期167-177,共11页
The solving of dynamic matrix square root(DMSR)problems is frequently encountered in many scientific and engineering fields.Although the original zeroing neural network is powerful for solving the DMSR,it cannot vanis... The solving of dynamic matrix square root(DMSR)problems is frequently encountered in many scientific and engineering fields.Although the original zeroing neural network is powerful for solving the DMSR,it cannot vanish the influence of the noise perturbations,and its constant-coefficient design scheme cannot accelerate the convergence speed.Therefore,a noise-tolerate and adaptive coefficient zeroing neural network(NTACZNN)is raised to enhance the robust noise immunity performance and accelerate the conver-gence speed simultaneously.Then,the global convergence and robustness of the pro-posed NTACZNN are theoretically analysed under an ideal environment and noise-perturbed circumstances.Furthermore,some illustrative simulation examples are designed and performed in order to substantiate the efficacy and advantage of the NTACZNN for the DMSR problem solution.Compared with some existing ZNNs,the proposed NTACZNN possesses advanced performance in terms of noise tolerance,solution accuracy,and convergence rate. 展开更多
关键词 adaptive intelligent systems neural network real-time systems
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部