The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in ...The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation.展开更多
In this study, organic solar cells (OSCs) with an active layer, a blend of polymer of non-fullerene (NFA) Y6 as an acceptor, and donor PBDB-T-2F as donor were simulated through the one-dimensional solar capacitance si...In this study, organic solar cells (OSCs) with an active layer, a blend of polymer of non-fullerene (NFA) Y6 as an acceptor, and donor PBDB-T-2F as donor were simulated through the one-dimensional solar capacitance simulator (SCAPS-1D) software to examine the performance of this type of organic polymer thin-film solar cell by varying the thickness of the active layer. PFN-Br interfacial layer entrenched in OPV devices gives overall enhanced open-circuit voltage, short-circuit current density and fill factor thus improving device performance. PEDOT: PSS is an electro-conductive polymer solution that has been extensively utilized in solar cell devices as a hole transport layer (HTL) due to its strong hole affinity, good thermal and mechanical stability, high work function, and high transparency in the visible range. The structure of the organic solar cell is ITO/PEDOT: PSS/BTP-4F: PBDB-T-2F/PFN-Br/Ag. Firstly, the active layer thickness was optimized to 100 nm;after that, the active-layer thickness was varied up to 900 nm. The results of these simulations demonstrated that the active layer thickness improves efficiency significantly up to 500 nm, then it decreased with increasing the thickness of the active layer from 600 nm, also notice that the short circuit current and the fill factor decrease with increasing the active layer from 600 nm, while the open voltage circuit increased with increasing the thickness of the active layer. The optimum thickness is 500 nm.展开更多
In this work, we present a theoretical and experimental study on the drain current 1/f noise in the AIGaN/GaN high electron mobility transistor (HEMT). Based on both mobility fluctuation and carrier number fluctuati...In this work, we present a theoretical and experimental study on the drain current 1/f noise in the AIGaN/GaN high electron mobility transistor (HEMT). Based on both mobility fluctuation and carrier number fluctuation in a two- dimensional electron gas (2DEG) channel of AlGaN/GaN HEMT, a unified drain current 1/f noise model containing a piezoelectric polarization effect and hot carrier effect is built. The drain current 1/f noise induced by the piezoelectric polarization effect is distinguished from that induced by the hot carrier effect through experiments and simulations. The simulation results are in good agreement with the experimental results. Experiments show that after hot carrier injection, the drain current 1/f noise increases four orders of magnitude and the electrical parameter degradation Agm/gm reaches 54.9%. The drain current 1/f noise degradation induced by the piezoelectric effect reaches one order of magnitude; the electrical parameter degradation Agm/gm is 11.8%. This indicates that drain current 1/f noise of the GaN-based HEMT device is sensitive to the hot carrier effect and piezoelectric effect. This study provides a useful reliability characterization tool for the A1GaN/GaN HEMTs.展开更多
After briefly introducing the characteristics of 1/f noise in millimeter wave focalplane array detectors, the paper analyses the relation of wavelet transform and 1/f noise in detail, suggests the fashion of decorrela...After briefly introducing the characteristics of 1/f noise in millimeter wave focalplane array detectors, the paper analyses the relation of wavelet transform and 1/f noise in detail, suggests the fashion of decorrelating 1/f noise using the wavelet transform and deduces the relative expressions. The results of computer simulation show good effectiveness.展开更多
Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions(DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0...Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions(DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0.8-nm thin top Mg O barrier of the CoFeB/MgO/CoFe/CoFeB/MgO/CoFe B DBMTJ. At enough large bias, 1/f noise dominates the voltage noise power spectra in the low frequency region, and is conventionally characterized by the Hooge parameter αmag.With increasing external field, the top and bottom ferromagnetic layers are aligned by the field, and then the middle free layer rotates from antiparallel state(antiferromagnetic coupling between top and middle ferromagnetic layers) to parallel state. In this rotation process αmag and magnetoresistance-sensitivity-product show a linear dependence, consistent with the fluctuation dissipation relation. With the magnetic field applied at different angles(θ) to the easy axis of the free layer,the linear dependence persists while the intercept of the linear fit satisfies a cos(θ) dependence, similar to that for the magnetoresistance, suggesting intrinsic relation between magnetic losses and magnetoresistance.展开更多
A new analysis of a previously studied traveling agent model, showed that there is a relation between the degree of homogeneity of the medium where the agents move, agent motion patterns, and the noise generated from ...A new analysis of a previously studied traveling agent model, showed that there is a relation between the degree of homogeneity of the medium where the agents move, agent motion patterns, and the noise generated from their displacements. We proved that for a particular value of homogeneity, the system self organizes in a state where the agents carry out Lévy walks and the displacement signal corresponds to 1/f noise. Using probabilistic arguments, we conjectured that 1/f noise is a fingerprint of a statistical phase transition, from randomness (disorder) to predictability (order), and that it emerges from the contextuality nature of the system which generates it.展开更多
The 1/fγ noise characteristic parameter Sfγ model in an n-MOSFET under DC hot carrier stress is studied. A method characterizing the MOSFET abilities of an anti-hot carrier with noise parameter Sfγ is presented. Th...The 1/fγ noise characteristic parameter Sfγ model in an n-MOSFET under DC hot carrier stress is studied. A method characterizing the MOSFET abilities of an anti-hot carrier with noise parameter Sfγ is presented. The hot carrier degradation effect of n-MOSFET in high-,mid-,and low gate stresses and its 1/fγ noise feature are studied. Experimental results agree well with the developed model.展开更多
It is found that ionizing-radiation can lead to the base current and the 1/f noise degradations in PNP bipolar junction transistors. In this paper, it is suggested that the surface of the space charge region of the em...It is found that ionizing-radiation can lead to the base current and the 1/f noise degradations in PNP bipolar junction transistors. In this paper, it is suggested that the surface of the space charge region of the emitter-base junction is the main source of the base surface 1/f noise. A model is developed which identifies the parameters and describes their interactive contributions to the recombination current at the surface of the space charge region. Based on the theory of carrier number fluctuation and the model of surface recombination current, a 1/f noise model is developed. This model suggests that 1/f noise degradations are the result of the accumulation of oxide-trapped charges and interface states. Combining models of ELDRS, this model can explain the reason why the 1/f noise degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 700 Gy(Si). The low dose rate was 0.001 Gy(Si)/s and the high dose rate was 0.1 Gy(Si)/s. The model accords well with the experimental results.展开更多
The 1/f noise in multiwalled carbon nanotubes bundles has been investigated between the frequency range of 0.1 to 30 Hz. At room temperature the noise spectrum is standard 1/f, and its level is proportional to the squ...The 1/f noise in multiwalled carbon nanotubes bundles has been investigated between the frequency range of 0.1 to 30 Hz. At room temperature the noise spectrum is standard 1/f, and its level is proportional to the square of the bias voltage. With decreasing temperature the noise level also decreases. At 4.2 K the noise level follows a non-monotonic dependence against the bias voltage, showing a peak at a certain bias voltage, meanwhile its frequency dependence also deviates from the 1/f trend. This anomalous behaviour is discussed within the picture of environmental quantum fluctuation of charge transport in the samples.展开更多
The influence of positive bias temperature instability(PBTI)on 1/f noise performance is systematically investigated on n-channel fin field-effect transistor(FinFET).The FinFET with long and short channel(L=240 nm,16 n...The influence of positive bias temperature instability(PBTI)on 1/f noise performance is systematically investigated on n-channel fin field-effect transistor(FinFET).The FinFET with long and short channel(L=240 nm,16 nm respectively)is characterized under PBTI stress from 0 s to 104 s.The 1/f noise features are analyzed by using the unified physical model taking into account the contributions from the carrier number and channel mobility fluctuations.The I d-V g,I d-V d,I g-V g tests are conducted to support and verify the physical analysis in the PBTI process.It is found that the influence of the channel mobility fluctuations may not be neglected.Due to the mobility degradation in a short-channel device,the noise level of the short channel device also degrades.Trapping and trap generation regimes of PBTI occur in high-k layer and are identified based on the results obtained for the gate leakage current and 1/f noise.展开更多
在简单回顾奇异值法压制随机噪音的基础上,提出了基于奇异值分解的f x y域滤波方法。该方法是一种三维去噪方法,它不需求取同相轴的倾角就可以去除倾斜同相轴的随机噪音,同时还可以较好地保持地震信号的振幅。经理论模型试算表明,该方...在简单回顾奇异值法压制随机噪音的基础上,提出了基于奇异值分解的f x y域滤波方法。该方法是一种三维去噪方法,它不需求取同相轴的倾角就可以去除倾斜同相轴的随机噪音,同时还可以较好地保持地震信号的振幅。经理论模型试算表明,该方法运算速度快,效果明显,是一种可行的去噪方法。展开更多
基金supported financially by the National Natural Science Foundation(No.41174117)the Major National Science and Technology Projects(No.2011ZX05031–001)
文摘The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation.
文摘In this study, organic solar cells (OSCs) with an active layer, a blend of polymer of non-fullerene (NFA) Y6 as an acceptor, and donor PBDB-T-2F as donor were simulated through the one-dimensional solar capacitance simulator (SCAPS-1D) software to examine the performance of this type of organic polymer thin-film solar cell by varying the thickness of the active layer. PFN-Br interfacial layer entrenched in OPV devices gives overall enhanced open-circuit voltage, short-circuit current density and fill factor thus improving device performance. PEDOT: PSS is an electro-conductive polymer solution that has been extensively utilized in solar cell devices as a hole transport layer (HTL) due to its strong hole affinity, good thermal and mechanical stability, high work function, and high transparency in the visible range. The structure of the organic solar cell is ITO/PEDOT: PSS/BTP-4F: PBDB-T-2F/PFN-Br/Ag. Firstly, the active layer thickness was optimized to 100 nm;after that, the active-layer thickness was varied up to 900 nm. The results of these simulations demonstrated that the active layer thickness improves efficiency significantly up to 500 nm, then it decreased with increasing the thickness of the active layer from 600 nm, also notice that the short circuit current and the fill factor decrease with increasing the active layer from 600 nm, while the open voltage circuit increased with increasing the thickness of the active layer. The optimum thickness is 500 nm.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61076101,61204092,61334002,and JJ0500102508)
文摘In this work, we present a theoretical and experimental study on the drain current 1/f noise in the AIGaN/GaN high electron mobility transistor (HEMT). Based on both mobility fluctuation and carrier number fluctuation in a two- dimensional electron gas (2DEG) channel of AlGaN/GaN HEMT, a unified drain current 1/f noise model containing a piezoelectric polarization effect and hot carrier effect is built. The drain current 1/f noise induced by the piezoelectric polarization effect is distinguished from that induced by the hot carrier effect through experiments and simulations. The simulation results are in good agreement with the experimental results. Experiments show that after hot carrier injection, the drain current 1/f noise increases four orders of magnitude and the electrical parameter degradation Agm/gm reaches 54.9%. The drain current 1/f noise degradation induced by the piezoelectric effect reaches one order of magnitude; the electrical parameter degradation Agm/gm is 11.8%. This indicates that drain current 1/f noise of the GaN-based HEMT device is sensitive to the hot carrier effect and piezoelectric effect. This study provides a useful reliability characterization tool for the A1GaN/GaN HEMTs.
文摘After briefly introducing the characteristics of 1/f noise in millimeter wave focalplane array detectors, the paper analyses the relation of wavelet transform and 1/f noise in detail, suggests the fashion of decorrelating 1/f noise using the wavelet transform and deduces the relative expressions. The results of computer simulation show good effectiveness.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00106,2012CB927400,2010CB934401,and 2014AA032904)the National High Technology Research and Development Program of China(Grant No.2014AA032904)the National Natural Science Foundation of China(Grant Nos.11434014 and 11104252)
文摘Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions(DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0.8-nm thin top Mg O barrier of the CoFeB/MgO/CoFe/CoFeB/MgO/CoFe B DBMTJ. At enough large bias, 1/f noise dominates the voltage noise power spectra in the low frequency region, and is conventionally characterized by the Hooge parameter αmag.With increasing external field, the top and bottom ferromagnetic layers are aligned by the field, and then the middle free layer rotates from antiparallel state(antiferromagnetic coupling between top and middle ferromagnetic layers) to parallel state. In this rotation process αmag and magnetoresistance-sensitivity-product show a linear dependence, consistent with the fluctuation dissipation relation. With the magnetic field applied at different angles(θ) to the easy axis of the free layer,the linear dependence persists while the intercept of the linear fit satisfies a cos(θ) dependence, similar to that for the magnetoresistance, suggesting intrinsic relation between magnetic losses and magnetoresistance.
文摘A new analysis of a previously studied traveling agent model, showed that there is a relation between the degree of homogeneity of the medium where the agents move, agent motion patterns, and the noise generated from their displacements. We proved that for a particular value of homogeneity, the system self organizes in a state where the agents carry out Lévy walks and the displacement signal corresponds to 1/f noise. Using probabilistic arguments, we conjectured that 1/f noise is a fingerprint of a statistical phase transition, from randomness (disorder) to predictability (order), and that it emerges from the contextuality nature of the system which generates it.
文摘The 1/fγ noise characteristic parameter Sfγ model in an n-MOSFET under DC hot carrier stress is studied. A method characterizing the MOSFET abilities of an anti-hot carrier with noise parameter Sfγ is presented. The hot carrier degradation effect of n-MOSFET in high-,mid-,and low gate stresses and its 1/fγ noise feature are studied. Experimental results agree well with the developed model.
基金supported by the National Natural Science Foundation of China(Grant Nos.61076101 and 61204092)
文摘It is found that ionizing-radiation can lead to the base current and the 1/f noise degradations in PNP bipolar junction transistors. In this paper, it is suggested that the surface of the space charge region of the emitter-base junction is the main source of the base surface 1/f noise. A model is developed which identifies the parameters and describes their interactive contributions to the recombination current at the surface of the space charge region. Based on the theory of carrier number fluctuation and the model of surface recombination current, a 1/f noise model is developed. This model suggests that 1/f noise degradations are the result of the accumulation of oxide-trapped charges and interface states. Combining models of ELDRS, this model can explain the reason why the 1/f noise degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 700 Gy(Si). The low dose rate was 0.001 Gy(Si)/s and the high dose rate was 0.1 Gy(Si)/s. The model accords well with the experimental results.
文摘The 1/f noise in multiwalled carbon nanotubes bundles has been investigated between the frequency range of 0.1 to 30 Hz. At room temperature the noise spectrum is standard 1/f, and its level is proportional to the square of the bias voltage. With decreasing temperature the noise level also decreases. At 4.2 K the noise level follows a non-monotonic dependence against the bias voltage, showing a peak at a certain bias voltage, meanwhile its frequency dependence also deviates from the 1/f trend. This anomalous behaviour is discussed within the picture of environmental quantum fluctuation of charge transport in the samples.
基金Project supported by the National Natural Science Foundation of China(Grant No.61634008).
文摘The influence of positive bias temperature instability(PBTI)on 1/f noise performance is systematically investigated on n-channel fin field-effect transistor(FinFET).The FinFET with long and short channel(L=240 nm,16 nm respectively)is characterized under PBTI stress from 0 s to 104 s.The 1/f noise features are analyzed by using the unified physical model taking into account the contributions from the carrier number and channel mobility fluctuations.The I d-V g,I d-V d,I g-V g tests are conducted to support and verify the physical analysis in the PBTI process.It is found that the influence of the channel mobility fluctuations may not be neglected.Due to the mobility degradation in a short-channel device,the noise level of the short channel device also degrades.Trapping and trap generation regimes of PBTI occur in high-k layer and are identified based on the results obtained for the gate leakage current and 1/f noise.