Nuclear factor κB (NF-κB) overactivation, requiring phosphorylation and degradation of its inhibitor IκBα, is the basis for chronicity of airway inflammation in asthma. Based on our previous plasmid pShuttle-Iκ...Nuclear factor κB (NF-κB) overactivation, requiring phosphorylation and degradation of its inhibitor IκBα, is the basis for chronicity of airway inflammation in asthma. Based on our previous plasmid pShuttle-IκBα, carrying an IκBα gene from human placenta, we optimized a novel IκBα mutant (IκBα) gene, constructed and characterized its replication-deficient recombinant adenovirus (AdIκBαM), and tested whether AdIκBαM-mediated overexpression of IκBαM could inhibit the NF-κB activation in endothelial cells.展开更多
基金This study was supported by grants from the National Youth NaturalScience Foundation of China(No.30400191)and the Key Subjectof’135’Project of Jiangsu Province(No.20013102).
文摘Nuclear factor κB (NF-κB) overactivation, requiring phosphorylation and degradation of its inhibitor IκBα, is the basis for chronicity of airway inflammation in asthma. Based on our previous plasmid pShuttle-IκBα, carrying an IκBα gene from human placenta, we optimized a novel IκBα mutant (IκBα) gene, constructed and characterized its replication-deficient recombinant adenovirus (AdIκBαM), and tested whether AdIκBαM-mediated overexpression of IκBαM could inhibit the NF-κB activation in endothelial cells.