背景:基于核转录因子κB通路探究神经炎症的靶向治疗越来越值得探究,中药靶点多、范围广、机制丰富及不良反应少等优点在治疗各类疾病时都具有十分巨大的潜力。目的:基于核转录因子κB信号通路,对近年研究中出现的山奈酚、红花黄、汉黄...背景:基于核转录因子κB通路探究神经炎症的靶向治疗越来越值得探究,中药靶点多、范围广、机制丰富及不良反应少等优点在治疗各类疾病时都具有十分巨大的潜力。目的:基于核转录因子κB信号通路,对近年研究中出现的山奈酚、红花黄、汉黄芩苷及雷公藤甲素等中药单体治疗脊髓损伤后神经炎症的研究进展进行系统的阐述与归纳。方法:以“脊髓损伤,炎症,抗炎,中药单体,单体化合物,NF-κB信号通路,黄酮,糖苷,酚类,酯类,生物碱”为检索词在中国知网数据库中进行检索;以“Spinal cord injury,inflammation,anti-inflammatory,traditional Chinese medicine monomer,monomeric compound,NF-κB signaling pathway,flavonoids,glycosides,phenols,esters,alkaloids”为检索词在PubMed数据库中进行检索,最终共纳入67篇文献进行综述分析。结果与结论:①核转录因子κB信号通路在神经系统中的作用复杂多样,能够调控中性粒细胞、小胶质细胞、星形胶质细胞和巨噬细胞等,介导损伤后炎症的发生与发展;②中药单体如汉黄芩苷对核转录因子κB抑制蛋白的降解、红花黄素对核转录因子κB信号通路磷酸化过程的抑制、山奈酚对核转录因子κB信号通路p65核易位的抑制等作用可以降低炎症反应对机体造成的影响,从而促进神经功能恢复;③核转录因子κB信号通路在损伤早期能够促进炎症反应和免疫细胞迁移活化,在损伤中后期能够促进损伤部位的修复和纤维化的发生等,适当的激活核转录因子κB信号通路具有促进炎症因子的释放、提高细胞的抗氧化能力及促进免疫细胞的活化等能力,但过度激活的核转录因子κB信号通路则容易导致慢性炎症的发生和持续、细胞凋亡受到抑制等;④未来的研究可以进一步探索如何准确调控核转录因子κB信号通路的活化水平、如何实现对神经系统炎症和损伤的精准干预展开,也可围绕中药单体的制备及中药单体对信号通路的作用机制展开,以期为神经系统疾病的康复和功能恢复提供更有效的治疗策略。展开更多
The strawberry species Fragaria nilgerrensis Schlechtendal ex J.Gay,renowned for its distinctive white,fragrant peach-like fruits and strong disease resistance,is an exceptional research material.In a previous study,a...The strawberry species Fragaria nilgerrensis Schlechtendal ex J.Gay,renowned for its distinctive white,fragrant peach-like fruits and strong disease resistance,is an exceptional research material.In a previous study,an ethyl methane sulfonate(EMS)mutant library was established for this species,resulting in various yellow leaf mutants.Leaf yellowing materials are not only the ideal materials for basic studies on photosynthesis mechanism,chloroplast development,and molecular regulation of various pigments,but also have important utilization value in ornamental plants breeding.The present study focused on four distinct yellow leaf mutants:mottled yellow leaf(MO),yellow green leaf(YG),light green leaf(LG),and buddha light leaf(BU).The results revealed that the flavonoid content and carotenoid-to-chlorophyll ratio exhibited a significant increase among these mutants,while experiencing a significant decrease in chlorophyll and carotenoid contents compared to the wild type(WT).To clarify the regulatory mechanisms and network relationships underlying these mutants,the RNA-seq and weighted gene coexpression network(WGCNA)analyses were employed.The results showed flavonoid metabolism pathway was enriched both in MO and YG mutants,while the chlorophyll biosynthesis pathway and carotenoid degradation pathway were only enriched in MO and YG mutants,respectively.Subsequently,key structural genes and transcription factors were identified on metabolic pathways of three pigments through correlation analyses and quantitative experiments.Furthermore,a R2R3-MYB transcription factor,FnMYB4,was confirmed to be positively correlated with flavonoid synthesis through transient overexpression,virus-induced gene silencing(VIGS),and RNA interference(RNAi),accompanying by reoccurrence and attenuation of mutant phenotype.Finally,dual-luciferase(LUC)and yeast one-hybrid assays confirmed the binding of FnMYB4 to the FnFLS and FnF3H promoters,indicating that FnMYB4 positively regulates flavonoid synthesis.In addition,correlation analyses suggested that FnMYB4 also might be involved in chlorophyll and carotenoid metabolisms.These findings demonstrated the pivotal regulatory role of FnMYB4 in strawberry leaf coloration.展开更多
The emergence of antiretroviral resistance mutations represents a major threat to the achievement of national and global goals for the elimination of HIV-1 infection. The global strategy in 2019 in Cte d'Ivoire is...The emergence of antiretroviral resistance mutations represents a major threat to the achievement of national and global goals for the elimination of HIV-1 infection. The global strategy in 2019 in Cte d'Ivoire is a new national policy for the management of people living with HIV with the administration of dolutegravir (DTG)-based fixed-dose combination. The aim of our study was to evaluate HIV-1 resistance to antiretrovirals (ARVs) in infected adult subjects in Cte d’Ivoire in the context of a systematic switch to a DTG-based combination. Between February 2022 and October 2023, a cross-sectional survey with random sampling was conducted in 06 services caring for people living with HIV. A total of 139 participants were included in the study. Adults with a viral load ≥ 1000 copies/mL were tested for HIV-1 ARV resistance mutations. Molecular analyses were performed using protocol of ANRS-MIE (National Agency for Research on AIDS and emerging infectious diseases). The interpretation is performed by HIVGRAD (https://www.hiv-grade.de/cms/grade/). The frequencies of HIV-1 resistance to non-nucleotide reverse transcriptase inhibitors (NNRTIs), nucleotide reverse transcriptase inhibitors (NRTIs), integrase inhibitors (IINTs) and protease inhibitors (PIs) were 82%, 73%, 19% and 11% respectively. The main mutations observed in the different classes were K103N (45%), M184V (64%), E157Q (19%) and L10V/M46I/A71V/I54V (6%) respectively. This study reveals the emergence of resistance to DTG-based fixed-dose combinations, favored by high rates of resistance to NRTIs and NNRTIs. This finding underlines the need for enhanced viral load monitoring and HIV-1 genotyping tests to guide the choice of NRTIs for combination therapy. In addition, monitoring for mutations to second-generation NRTIs is essential, given the scale-up of DTG-based regimens currently underway in Cte d’Ivoire.展开更多
Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-st...Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-strand breaks of DNA,causing insertional mutation.The random insertional mutant library constructed using this method has become a method of forward genetics for gene cloning.However,the establishment of a random insertional mutant library requires a high transformation efficiency of exogenous genes.Many microalgal species show a low transformation efficiency,making constructing random insertional mutant libraries difficult.In this study,we established a highly efficient transformation method for constructing a random insertional mutant library of Nannochloropsis oceanica,and tentatively tried to isolate its genes to prove the feasibility of the method.A gene that may control the growth rate and cell size was identified.This method will facilitate the genetic studies of N.oceanica,which should also be a reference for other microalgal species.展开更多
In this editorial,we comment on the article by Meng et al.Chronic hepatitis B(CHB)is a significant global health problem,particularly in developing countries.Hepatitis B virus(HBV)infection is one of the most importan...In this editorial,we comment on the article by Meng et al.Chronic hepatitis B(CHB)is a significant global health problem,particularly in developing countries.Hepatitis B virus(HBV)infection is one of the most important risk factors for cirrhosis and hepatocellular carcinoma.Prevention and treatment of HBV are key measures to reduce complications.At present,drug therapy can effectively control virus replication and slow disease progression,but completely eliminating the virus remains a challenge.Anti-HBV treatment is a long-term process,and there are many kinds of antiviral drugs with different mechanisms of action,it is essential to evaluate the safety and efficacy of these drugs to reduce side effects and improve patients’compliance.We will summarize the current status of CHB drug treatment,hoping to provide a reference for the selection of clinical antiviral drugs.展开更多
In this editorial,we comment on the article by Mu et al,published in the recent issue of the World Journal of Gastrointestinal Oncology.We pay special attention to the immune tolerance mechanism caused by hepatitis B ...In this editorial,we comment on the article by Mu et al,published in the recent issue of the World Journal of Gastrointestinal Oncology.We pay special attention to the immune tolerance mechanism caused by hepatitis B virus(HBV)infection,the pathogenesis of hepatocellular carcinoma(HCC),and the role of antiviral therapy in treating HCC related to HBV infection.HBV infection leads to systemic innate immune tolerance by directly inhibiting pattern recognition receptor recognition and antiviral signaling pathways,as well as by inhibiting the immune functions of macrophages,natural killer cells and dendritic cells.In addition,HBV leads to an immunosuppressive cascade by expressing inhibitory molecules to induce exhaustion of HBV-specific cluster of differentiation 8+T cells,ultimately leading to long-term viral infection.The loss of immune cell function caused by HBV infection ultimately leads to HCC.Long-term antiviral therapy can improve the prognosis of patients with HCC and prevent tumor recurrence and metastasis.展开更多
文摘背景:基于核转录因子κB通路探究神经炎症的靶向治疗越来越值得探究,中药靶点多、范围广、机制丰富及不良反应少等优点在治疗各类疾病时都具有十分巨大的潜力。目的:基于核转录因子κB信号通路,对近年研究中出现的山奈酚、红花黄、汉黄芩苷及雷公藤甲素等中药单体治疗脊髓损伤后神经炎症的研究进展进行系统的阐述与归纳。方法:以“脊髓损伤,炎症,抗炎,中药单体,单体化合物,NF-κB信号通路,黄酮,糖苷,酚类,酯类,生物碱”为检索词在中国知网数据库中进行检索;以“Spinal cord injury,inflammation,anti-inflammatory,traditional Chinese medicine monomer,monomeric compound,NF-κB signaling pathway,flavonoids,glycosides,phenols,esters,alkaloids”为检索词在PubMed数据库中进行检索,最终共纳入67篇文献进行综述分析。结果与结论:①核转录因子κB信号通路在神经系统中的作用复杂多样,能够调控中性粒细胞、小胶质细胞、星形胶质细胞和巨噬细胞等,介导损伤后炎症的发生与发展;②中药单体如汉黄芩苷对核转录因子κB抑制蛋白的降解、红花黄素对核转录因子κB信号通路磷酸化过程的抑制、山奈酚对核转录因子κB信号通路p65核易位的抑制等作用可以降低炎症反应对机体造成的影响,从而促进神经功能恢复;③核转录因子κB信号通路在损伤早期能够促进炎症反应和免疫细胞迁移活化,在损伤中后期能够促进损伤部位的修复和纤维化的发生等,适当的激活核转录因子κB信号通路具有促进炎症因子的释放、提高细胞的抗氧化能力及促进免疫细胞的活化等能力,但过度激活的核转录因子κB信号通路则容易导致慢性炎症的发生和持续、细胞凋亡受到抑制等;④未来的研究可以进一步探索如何准确调控核转录因子κB信号通路的活化水平、如何实现对神经系统炎症和损伤的精准干预展开,也可围绕中药单体的制备及中药单体对信号通路的作用机制展开,以期为神经系统疾病的康复和功能恢复提供更有效的治疗策略。
基金the National Natural Science Foundation of China(Grant No.32372652)the Liaoning Provincial Science and Technology Project of‘Jiebangguashuai’(Grant No.2022JH1/10400016)the Shenyang Academician and Expert Workstation Project(Grant No.2022-15).
文摘The strawberry species Fragaria nilgerrensis Schlechtendal ex J.Gay,renowned for its distinctive white,fragrant peach-like fruits and strong disease resistance,is an exceptional research material.In a previous study,an ethyl methane sulfonate(EMS)mutant library was established for this species,resulting in various yellow leaf mutants.Leaf yellowing materials are not only the ideal materials for basic studies on photosynthesis mechanism,chloroplast development,and molecular regulation of various pigments,but also have important utilization value in ornamental plants breeding.The present study focused on four distinct yellow leaf mutants:mottled yellow leaf(MO),yellow green leaf(YG),light green leaf(LG),and buddha light leaf(BU).The results revealed that the flavonoid content and carotenoid-to-chlorophyll ratio exhibited a significant increase among these mutants,while experiencing a significant decrease in chlorophyll and carotenoid contents compared to the wild type(WT).To clarify the regulatory mechanisms and network relationships underlying these mutants,the RNA-seq and weighted gene coexpression network(WGCNA)analyses were employed.The results showed flavonoid metabolism pathway was enriched both in MO and YG mutants,while the chlorophyll biosynthesis pathway and carotenoid degradation pathway were only enriched in MO and YG mutants,respectively.Subsequently,key structural genes and transcription factors were identified on metabolic pathways of three pigments through correlation analyses and quantitative experiments.Furthermore,a R2R3-MYB transcription factor,FnMYB4,was confirmed to be positively correlated with flavonoid synthesis through transient overexpression,virus-induced gene silencing(VIGS),and RNA interference(RNAi),accompanying by reoccurrence and attenuation of mutant phenotype.Finally,dual-luciferase(LUC)and yeast one-hybrid assays confirmed the binding of FnMYB4 to the FnFLS and FnF3H promoters,indicating that FnMYB4 positively regulates flavonoid synthesis.In addition,correlation analyses suggested that FnMYB4 also might be involved in chlorophyll and carotenoid metabolisms.These findings demonstrated the pivotal regulatory role of FnMYB4 in strawberry leaf coloration.
文摘The emergence of antiretroviral resistance mutations represents a major threat to the achievement of national and global goals for the elimination of HIV-1 infection. The global strategy in 2019 in Cte d'Ivoire is a new national policy for the management of people living with HIV with the administration of dolutegravir (DTG)-based fixed-dose combination. The aim of our study was to evaluate HIV-1 resistance to antiretrovirals (ARVs) in infected adult subjects in Cte d’Ivoire in the context of a systematic switch to a DTG-based combination. Between February 2022 and October 2023, a cross-sectional survey with random sampling was conducted in 06 services caring for people living with HIV. A total of 139 participants were included in the study. Adults with a viral load ≥ 1000 copies/mL were tested for HIV-1 ARV resistance mutations. Molecular analyses were performed using protocol of ANRS-MIE (National Agency for Research on AIDS and emerging infectious diseases). The interpretation is performed by HIVGRAD (https://www.hiv-grade.de/cms/grade/). The frequencies of HIV-1 resistance to non-nucleotide reverse transcriptase inhibitors (NNRTIs), nucleotide reverse transcriptase inhibitors (NRTIs), integrase inhibitors (IINTs) and protease inhibitors (PIs) were 82%, 73%, 19% and 11% respectively. The main mutations observed in the different classes were K103N (45%), M184V (64%), E157Q (19%) and L10V/M46I/A71V/I54V (6%) respectively. This study reveals the emergence of resistance to DTG-based fixed-dose combinations, favored by high rates of resistance to NRTIs and NNRTIs. This finding underlines the need for enhanced viral load monitoring and HIV-1 genotyping tests to guide the choice of NRTIs for combination therapy. In addition, monitoring for mutations to second-generation NRTIs is essential, given the scale-up of DTG-based regimens currently underway in Cte d’Ivoire.
基金the National Key R&D Program of China(Nos.2018YFD0901506,2018YFD0900305)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2018 SDKJ0406-3)。
文摘Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-strand breaks of DNA,causing insertional mutation.The random insertional mutant library constructed using this method has become a method of forward genetics for gene cloning.However,the establishment of a random insertional mutant library requires a high transformation efficiency of exogenous genes.Many microalgal species show a low transformation efficiency,making constructing random insertional mutant libraries difficult.In this study,we established a highly efficient transformation method for constructing a random insertional mutant library of Nannochloropsis oceanica,and tentatively tried to isolate its genes to prove the feasibility of the method.A gene that may control the growth rate and cell size was identified.This method will facilitate the genetic studies of N.oceanica,which should also be a reference for other microalgal species.
基金Supported by the Project of Guizhou Provincial Department of Science and Technology,No.Qiankehechengguo-LC[2024]109.
文摘In this editorial,we comment on the article by Meng et al.Chronic hepatitis B(CHB)is a significant global health problem,particularly in developing countries.Hepatitis B virus(HBV)infection is one of the most important risk factors for cirrhosis and hepatocellular carcinoma.Prevention and treatment of HBV are key measures to reduce complications.At present,drug therapy can effectively control virus replication and slow disease progression,but completely eliminating the virus remains a challenge.Anti-HBV treatment is a long-term process,and there are many kinds of antiviral drugs with different mechanisms of action,it is essential to evaluate the safety and efficacy of these drugs to reduce side effects and improve patients’compliance.We will summarize the current status of CHB drug treatment,hoping to provide a reference for the selection of clinical antiviral drugs.
基金Supported by the Natural Science Foundation of China,No.81970529the Natural Science Foundation of Jilin Province,No.20230508074RC and No.YDZJ202401218ZYTS.
文摘In this editorial,we comment on the article by Mu et al,published in the recent issue of the World Journal of Gastrointestinal Oncology.We pay special attention to the immune tolerance mechanism caused by hepatitis B virus(HBV)infection,the pathogenesis of hepatocellular carcinoma(HCC),and the role of antiviral therapy in treating HCC related to HBV infection.HBV infection leads to systemic innate immune tolerance by directly inhibiting pattern recognition receptor recognition and antiviral signaling pathways,as well as by inhibiting the immune functions of macrophages,natural killer cells and dendritic cells.In addition,HBV leads to an immunosuppressive cascade by expressing inhibitory molecules to induce exhaustion of HBV-specific cluster of differentiation 8+T cells,ultimately leading to long-term viral infection.The loss of immune cell function caused by HBV infection ultimately leads to HCC.Long-term antiviral therapy can improve the prognosis of patients with HCC and prevent tumor recurrence and metastasis.