The steel industry is considered an important basic sector of the national economy,and its high energy consumption and carbon emissions make it a major contributor to climate change,especially in China.The majority of...The steel industry is considered an important basic sector of the national economy,and its high energy consumption and carbon emissions make it a major contributor to climate change,especially in China.The majority of crude steel in China is produced via the energy-and carbon-intensive blast furnace–basic oxygen furnace(BF–BOF)route,which greatly relies on coking coal.In recent years,China’s steel sector has made significant progress in energy conservation and emission reduction,driven by decarbonization policies and regulations.However,due to the huge output of crude steel,the steel sector still produces 15%of the total national CO_(2) emissions.The direct reduced iron(DRI)plus scrap–electric arc furnace(EAF)process is currently considered a good alternative to the conventional route as a means of reducing CO_(2) emissions and the steel industry’s reliance on iron ore and coking coal,since the gas-based DRI plus scrap–EAF route is expected to be more promising than the coal-based one.Unfortunately,almost no DRI is produced in China,seriously restricting the development of the EAF route.Here,we highlight the challenges and pathways of the future development of DRI,with a focus on China.In the short term,replacing natural gas with coke oven gas(COG)and byproduct gas from the integrated refining and chemical sector is a more economically feasible and cleaner way to develop a gas-based route in China.As the energy revolution proceeds,using fossil fuels in combination with carbon capture,utilization,and storage(CCUS)and hydrogen will be a good alternative due to the relatively low cost.In the long term,DRI is expected to be produced using 100%hydrogen from renewable energy.Both the development of deep processing technologies and the invention of a novel binder are required to prepare high-quality pellets for direct reduction(DR),and further research on the one-step gas-based process is necessary.展开更多
In this paper,the definition,connotation,and internal relationship of mountains,rivers,forests,farmlands,lakes,and grasslands in China are elaborated,and the current situation of ecological restoration projects for mo...In this paper,the definition,connotation,and internal relationship of mountains,rivers,forests,farmlands,lakes,and grasslands in China are elaborated,and the current situation of ecological restoration projects for mountains,rivers,forests,farmlands,lakes,and grasslands was introduced.Moreover,the problems that have arisen in the specific implementation process of pilot projects were analyzed,such as unclear target positioning,inaccurate analysis of ecological problems,insufficient engineering design systematicness,weak operability of evaluation standards,and weak coordination in engineering management.The development direction and major needs for the protection and restoration of mountains,rivers,forests,farmlands,lakes,and grasslands in the future have been proposed from four aspects:theoretical research,engineering design,effect evaluation,and monitoring and supervision.展开更多
The shale gas resources in China have great potential and the geological resources of shale gas is over 100×10^(12)m^(3),which includes about 20×10^(12)m^(3) of recoverable resources.Organic-rich shales can ...The shale gas resources in China have great potential and the geological resources of shale gas is over 100×10^(12)m^(3),which includes about 20×10^(12)m^(3) of recoverable resources.Organic-rich shales can be divided into three types according to their sedimentary environments,namely marine,marine-continental transitional,and continental shales,which are distributed in 13 stratigraphic systems from the Mesoproterozoic to the Cenozoic.The Sichuan Basin and its surrounding areas have the highest geological resources of shale gas,and the commercial development of shale gas has been achieved in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in these areas,with a shale gas production of up to 20×10^(9)m^(3) in 2020.China has seen rapid shale gas exploration and development over the last five years,successively achieving breakthroughs and important findings in many areas and strata.The details are as follows.(1)Large-scale development of middle-shallow shale gas(burial depth:less than 3500 m)has been realized,with the productivity having rapidly increased;(2)breakthroughs have been constantly made in the development of deep shale gas(burial depth:3500-4500 m),and the ultradeep shale gas(burial depth:greater than 4500 m)is under testing;(3)breakthroughs have been made in the development of normal-pressure shale gas,and the assessment of the shale gas in complex tectonic areas is being accelerated;(4)shale gas has been frequently discovered in new areas and new strata,exhibiting a great prospect.Based on the exploration and development practice,three aspects of consensus have been gradually reached on the research progress in the geological theories of shale gas achieved in China.(1)in terms of deep-water fine-grained sediments,organic-rich shales are the base for the formation of shale gas;(2)in terms of high-quality reservoirs,the development of micro-nano organic matter-hosted pores serves as the core of shale gas accumulation;(3)in terms of preservation conditions,weak structural transformation,a moderate degree of thermal evolution,and a high pressure coefficient are the key to shale gas enrichment.As a type of important low-carbon fossil energy,shale gas will play an increasingly important role in achieving the strategic goals of peak carbon dioxide emissions and carbon neutrality.Based on the in-depth study of shale gas geological conditions and current exploration progress,three important directions for shale gas exploration in China in the next five years are put forward.展开更多
By reviewing the development history of stimulation techniques for deep/ultra-deep oil and gas reservoirs,the new progress in this field in China and abroad has been summed up,including deeper understanding on formati...By reviewing the development history of stimulation techniques for deep/ultra-deep oil and gas reservoirs,the new progress in this field in China and abroad has been summed up,including deeper understanding on formation mechanisms of fracture network in deep/ultra-deep oil and gas reservoir,performance improvement of fracturing fluid materials,fine stratification of ultra-deep vertical wells,and mature staged multi-cluster fracturing technique for ultra-deep and highly deviated wells/horizontal wells.In light of the exploration and development trend of ultra-deep oil and gas reservoirs in China,the requirements and technical difficulties in ultra-deep oil and gas reservoir stimulation are discussed:(1)The research and application of integrated geological engineering technology is difficult.(2)The requirements on fracturing materials for stimulation are high.(3)It is difficult to further improve the production in vertical profile of the ultra-deep and hugely thick reservoirs.(4)The requirements on tools and supporting high-pressure equipment on the ground for stimulation are high.(5)It is difficult to achieve efficient stimulation of ultra-deep,high-temperature and high-pressure wells.(6)It is difficult to monitor directly the reservoir stimulation and evaluate the stimulation effect accurately after stimulation.In line with the complex geological characteristics of ultra-deep oil and gas reservoirs in China,seven technical development directions are proposed:(1)To establish systematic new techniques for basic research and evaluation experiments;(2)to strengthen geological research and improve the operational mechanism of integrating geological research and engineering operation;(3)to develop high-efficiency fracturing materials for ultra-deep reservoirs;(4)to research separated layer fracturing technology for ultra-deep and hugely thick reservoirs;(5)to explore fracture-control stimulation technology for ultra-deep horizontal well;(6)to develop direct monitoring technology for hydraulic fractures in ultra-deep oil and gas reservoirs;(7)to develop downhole fracturing tools with high temperature and high pressure tolerance and supporting wellhead equipment able to withstand high pressure.展开更多
This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technol...This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technological development directions of overseas business to overcome the challenges met in overseas oil and gas production. In the course of PetroChina’s overseas oil and gas field production practice of more than 20 years, a series of characteristic technologies suitable for overseas oil and gas fields have been created by combining the domestic mature oil and gas field production technologies with the features of overseas oil and gas reservoirs, represented by the technology for high-speed development and stabilizing oil production and controlling water rise for overseas sandstone oilfields, high efficiency development technology for large carbonate oil and gas reservoirs and foamy oil depletion development technology in use of horizontal wells for extra-heavy oil reservoirs. Based on in-depth analysis of the challenges faced by overseas oil and gas development and technological requirements, combined with the development trends of oil and gas development technologies in China and abroad, overseas oil and gas development technologies in the future are put forward, including artificial intelligence reservoir prediction and 3 D geological modeling, secondary development and enhanced oil recovery(EOR) of overseas sandstone oilfields after high speed development, water and gas injection to improve oil recovery in overseas carbonate oil and gas reservoirs, economic and effective development of overseas unconventional oil and gas reservoirs, efficient development of marine deep-water oil and gas reservoirs. The following goals are expected to be achieved: keep the enhanced oil recovery(EOR) technology for high water-cut sandstone oilfield at international advanced level, and make the development technology for carbonate oil and gas reservoirs reach the international advanced level, and the development technologies for unconventional and marine deep-water oil and gas reservoirs catch up the level of international leading oil companies quickly.展开更多
With the rapid development of electronic commerce, supply chain management is facing more and more new challenges. Therefore, it is particularly important to study the development of clear direction of supply chain. H...With the rapid development of electronic commerce, supply chain management is facing more and more new challenges. Therefore, it is particularly important to study the development of clear direction of supply chain. However, the supply chain is composed of different interest subjects, each subject in order to achieve the maximization of their own interests and adopt different measures, is a complex, huge system, has brought the huge challenge to the supply chain management. In this paper, the research on Supply Chain Management in the current situation, characteristics and the modem supply chain management are summarized, and combined with new challenges of supply chain management to predict future research direction is the development of supply chain management, in order to make the supply chain management to the greatest extent satisfy the consumer e-commerce mode increasingly popular.展开更多
[Objective] The aim was to introduce the development and application of 2BDQ-8 rice direct sowing machine and provide a theoretical basis for rice mechanization production. [Method] 2BDQ-8 rice direct sowing machine w...[Objective] The aim was to introduce the development and application of 2BDQ-8 rice direct sowing machine and provide a theoretical basis for rice mechanization production. [Method] 2BDQ-8 rice direct sowing machine was used for the promotion test in field of several cities and counties in Jiangsu Province,and artificial rice planting and mechanization rice planting were compared to explore the production and economic situation. [Result] 2BDQ-8 rice direct sowing machine had advantages such as high efficiency and low cost,the rice direct sowing machine saved about 30% compared to the artificial rice planting and mechanization rice planting,and the overall efficiency was significant. [Conclusion] 2BDQ-8 rice sowing machine was a production technology that had low cost and high efficiency,which should be widely applied.展开更多
As the life expectancy of the world’s population increases,age-related diseases are emerging as one of the greatest problems facing modern society.The onset of dementia and neurodegenerative diseases is strictly depe...As the life expectancy of the world’s population increases,age-related diseases are emerging as one of the greatest problems facing modern society.The onset of dementia and neurodegenerative diseases is strictly dependent on aging as a major risk factor and has a profound impact on various aspects of the lives of individuals and their families.展开更多
Einstein–Podolsky–Rosen(EPR) steering is an example of nontrivial quantum nonlocality and characteristic in the non-classical world.The directivity(or asymmetry) is a fascinating trait of EPR steering,and it is diff...Einstein–Podolsky–Rosen(EPR) steering is an example of nontrivial quantum nonlocality and characteristic in the non-classical world.The directivity(or asymmetry) is a fascinating trait of EPR steering,and it is different from other quantum nonlocalities.Here,we consider the strategy in which two atoms compose a two-qubit X state,and the two atoms are owned by Alice and Bob,respectively.The atom of Alice suffers from a reservoir,and the atom of Bob couples with a bit flip channel.The influences of auxiliary qubits on EPR steering and its directions are revealed by means of the entropy uncertainty relation.The results indicate that EPR steering declines with growing time t when adding fewer auxiliary qubits.The EPR steering behaves as damped oscillation when introducing more auxiliary qubits in the strong coupling regime.In the weak coupling regime,the EPR steering monotonously decreases as t increases when coupling auxiliary qubits.The increases in auxiliary qubits are responsible for the fact that the steerability from Alice to Bob(or from Bob to Alice) can be more effectively revealed.Notably,the introductions of more auxiliary qubits can change the situation that steerability from Alice to Bob is certain to a situation in which steerability from Bob to Alice is certain.展开更多
The direct leaching kinetics of an iron-poor zinc sulfide concentrate in the tubular reactor was examined.All tests werecarried out in the pilot plant.To allow the execution of hydrostatic pressure condition,the slurr...The direct leaching kinetics of an iron-poor zinc sulfide concentrate in the tubular reactor was examined.All tests werecarried out in the pilot plant.To allow the execution of hydrostatic pressure condition,the slurry with ferrous sulfate and sulfuric acidsolution was filled into a vertical tube(9m in height)and air was blown from the bottom of the reactor.The effects of initial acidconcentration,temperature,particle size,initial zinc sulfate concentration,pulp density and the concentration of Fe on the leachingkinetics were investigated.Results of the kinetic analysis indicate that direct leaching of zinc sulfide concentrate follows shrinkingcore model(SCM).This process was controlled by a chemical reaction with the apparent activation energy of49.7kJ/mol.Furthermore,a semi-empirical equation is obtained,showing that the order of the iron,sulfuric acid and zinc sulfate concentrationsand particle radius are0.982,0.189,-0.097and-0.992,respectively.Analysis of the unreacted and reacted sulfide particles bySEM-EDS shows that insensitive agitation in the reactor causes detachment of the sulfur layer from the particles surface in lowerthan60%Zn conversion and lixiviant in the face with sphalerite particles.展开更多
In coalmines of China, horizontal directional drilling (HDD) is an increasingly popular method for underground in-seam gas drainage. Numerical simulation, especially finite element analysis, is often used as an effe...In coalmines of China, horizontal directional drilling (HDD) is an increasingly popular method for underground in-seam gas drainage. Numerical simulation, especially finite element analysis, is often used as an effective method to improve HDD operation. These improvements focus on rock-breaking efficiency, directional precision, stability of the borehole wall, and reliability of the drill equipment. On the basis of underground drilling characteristics, typical numerical simulation exam- ples in drilling techniques and equipment are summarized and analyzed. In the end, the future development trends of numerical simulation in underground in-seam drilling are proposed.展开更多
Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and ...Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and treering chronologies developed on northern and western slopes from the Lubanling in the Funiu Mountains.Correlation analyses showed that two chronologies were mainly limited by temperatures in the previous June–August and the combination of temperatures and moisture in the current May–July.The difference of the climate response to slopes was small but not negligible.Radial growth of the LBL01 site on the northern slope was affected by the combined maximum and minimum temperatures,while that of the LBL02 site was affected by maximum temperatures.With regards to moisture,radial growth of the trees on the north slope was influenced by the relative humidity in the current May–July,while on the western slope,it was affected by the relative humidity in the previous June–August,the current May–July and the precipitation in the current May–July.With the change in climate,the effects of the main limiting factors on growth on different slopes were visible to a certain extent,but the differences in response of trees on different slopes gradually decreased,which might be caused by factors such as different slope directions and the change in diurnal temperature range.These results may provide information for forest protection and ecological construction in this region,and a scientific reference for future climate reconstruction.展开更多
Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and ...Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and tree-ring chronologies developed on northern and western slopes from the Lubanling in the Funiu Mountains.Correlation analyses showed that two chronologies were mainly limited by temperatures in the previous June-August and the com-bination of temperatures and moisture in the current May-July.The difference of the climate response to slopes was small but not negligible.Radial growth of the LBLO1 site on the northern slope was affected by the combined maximum and minimum temperatures,while that of the LBLO2 site was affected by maximum temperatures.With regards to moisture,radial growth of the trees on the north slope was influenced by the relative humidity in the current May-July,while on the western slope,it was affected by the relative humidity in the previous June-August,the current May-July and the precipitation in the current May-July.With the change in climate,the effects of the main limiting factors on growth on different slopes were visible to a certain extent,but the differences in response of trees on different slopes gradually decreased,which might be caused by factors such as different slope directions and the change in diurnal temperature range.These results may provide information for forest protection and ecological construction in this region,and a scientific reference for future climate reconstruction.展开更多
To probe into the directions and difficulties of standardization discipline construction in China,China Standardization Press organized a pertinent dialogue on July 10.During the event,Yu Xinli,President of China Asso...To probe into the directions and difficulties of standardization discipline construction in China,China Standardization Press organized a pertinent dialogue on July 10.During the event,Yu Xinli,President of China Association for Standardization,was invited as the moderator.Several standardization experts including Song Mingshun,Mai Lyubo,Qiang Yi,Cao Lili,and Huang Manxue from the China Standardization Expert Committee and renowned universities and research institutes in the country were invited as guests to give their insightful views.展开更多
Through a comprehensive review of the development status of workover technology of PetroChina Company Limited(PetroChina), this paper presents the connotation of workover operation under the background of the new era,...Through a comprehensive review of the development status of workover technology of PetroChina Company Limited(PetroChina), this paper presents the connotation of workover operation under the background of the new era, the latest progress of workover operation in the respects of equipment, tools, technology and the construction of information and standardization. The gaps between PetroChina and foreign counterpart in workover technology are as follows: the level of automation and intellectualization of tools and equipment is relatively low, the snubbing operation in gas wells characterized by HT/HP and high H2 S is lagged behind;water plugging in the long horizontal wellbore needs to be further developed, coiled tubing and its relevant equipment for ultra-deep well operation has to be optimized;informationization, standardization and big data application of workover operation need to be started. Based on this as well as the development status of workover technology in China and the technical difficulties faced in the future, eight suggestions for future development are put forward:(1) strengthen the dynamic understanding of reservoir and improve the pertinence of workover schemes;(2) develop the general overhaul technology in a systematical way to tackle issues of seriously problematic wells;(3) put more efforts into the research of horizontal well workover operation and develop relevant technology for long horizontal section operation;(4) improve the snubbing technology and extend its applications;(5) expand the capacity of coiled tubing operation and improve the level of special operations;(6) develop automatic workover technology into the field of artificial intelligence;(7) promote clean operation in an all-round way and build green oil and gas fields;(8) perfect the informationization construction to realize the sharing of workover resources.展开更多
The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the prot...The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the protective benefits of High Density Polyethylene(HDPE)board sand fences,focusing on their orientation relative to various wind directions(referred to as'wind angle').This study found that the size of the low-velocity zone on the leeward side of the sand fences(LSF)expanded with an increase in the wind angle(WA).At 1H(the height of the sand fence)and 2H positions on the LSF,the wind speed profiles(WSP)exhibited a segmented logarithmic growth,constrained by Z=H at varying WAs.The efficacy of the sand fence in obstructing airflow escalated as WA increased.The size of the WA has a significant impact on the protective efficiency of HDPE board sand fences.Furthermore,compared to typical sandy surfaces,the rate of sand transport across the Gobi surface diminishes more slowly with height,attributed to the gravel's rebound effect.This phenomenon allows some sand particles to bypass the fences,rendering them less effective at blocking wind and trapping sand than in sandy environments.This paper offers scientific evidence supporting the practical use and enhancement of HDPE board sand fences in varied wind conditions.展开更多
A direct time integration scheme based on Gauss-Legendre quadrature is proposed to solve problems in linear structural dynamics.The proposed method is a oneparameter non-dissipative scheme.Improved stability,accuracy,...A direct time integration scheme based on Gauss-Legendre quadrature is proposed to solve problems in linear structural dynamics.The proposed method is a oneparameter non-dissipative scheme.Improved stability,accuracy,and dispersion characteristics are achieved using appropriate values of the parameter.The proposed scheme has second-order accuracy with and without physical damping.Moreover,its stability,accuracy,and dispersion are analyzed.In addition,its performance is demonstrated by the two-dimensional scalar wave problem,the single-degree-of-freedom problem,two degrees-of-freedom spring system,and beam with boundary constraints.The wave propagation problem is solved in the high frequency wave regime to demonstrate the advantage of the proposed scheme.When the proposed scheme is applied to solve the wave problem,more accurate solutions than those of other methods are obtained by using the appropriate value of the parameter.For the single-degree-offreedom system,two degrees-of-freedom system,and the time responses of beam,the proposed scheme can be used effectively owing to its high accuracy and lower computational cost.展开更多
BACKGROUND Adolescent idiopathic scoliosis remains a major problem due to its high incidence,high risk,and high cost.One of the aims of the management in scoliosis is to correct the deformity.Many techniques are avail...BACKGROUND Adolescent idiopathic scoliosis remains a major problem due to its high incidence,high risk,and high cost.One of the aims of the management in scoliosis is to correct the deformity.Many techniques are available to correct scoliosis deformity;however,they are all far from ideal to achieve three-dimensional correction in scoliosis.AIM To develop a set of tools named Scoliocorrector Fatma-UI(SCFUI)to aid threedimensional correction and to evaluate the efficacy,safety,and functional outcome.METHODS This study consists of two stages.In the first stage,we developed the SCFUI and tested it in finite element and biomechanical tests.The second stage was a single-blinded randomized clinical trial to evaluate the SCFUI compared to direct vertebral rotation(DVR).Forty-four subjects with adolescent idiopathic scoliosis were randomly allocated into the DVR group(n=23)and SCFUI group(n=21).Radiological,neurological,and functional outcome was compared between the groups.RESULTS Finite element revealed the maximum stress of the SCFUI components to be between 31.2-252 MPa.Biomechanical analysis revealed the modulus elasticity of SCFUI was 9561324±633277 MPa.Both groups showed improvement in Cobb angle and sagittal profile,however the rotation angle was lower in the SCFUI group(11.59±7.46 vs 18.23±6.39,P=0.001).Neurological and functional outcome were comparable in both groups.CONCLUSION We concluded that SCFUI developed in this study resulted in similar coronal and sagittal but better rotational correction compared to DVR.The safety and functional outcomes were also similar to DVR.展开更多
Objectives:This study aims to develop the Directive and Nondirective Support Scale for Patients with Type 2 Diabetes(DNSS-T2DM)to measure diabetes-specific support and patients’preference as well as evaluate the cons...Objectives:This study aims to develop the Directive and Nondirective Support Scale for Patients with Type 2 Diabetes(DNSS-T2DM)to measure diabetes-specific support and patients’preference as well as evaluate the construct validity and reliability of the DNSS-T2DM.Methods:A cross-sectional study was conducted in Tongzhou District,Beijing,China from July to September 2015.A total of 474 participants who had been diagnosed as type 2 diabetes by physicians and completed the DNSS-T2DM were included.The original 11-item DNSS-T2DM contains five items on nondirective support(Items 1-5)and six items on directive support(Items 6-11).There were two parallel questions for each item with one to measure the preference for support(Preference part)and the other to measure the perception of support in reality(Reality part).The final DNSS-T2DM was determined based on the results of the exploratory factor analysis(EFA).The construct validity of the final DNSS-T2DM was evaluated by the confirmatory factor analysis(CFA).The reliability was evaluated by internal consistency with Cronbach’sαcoefficients.Results:A final 7-item DNSS-T2DM loaded on 2 factors with four items representing nondirective support and three items representing directive support was determined based on the EFA.The CFA indicated a satisfactory construct validity.The internal consistency of the 7-item DNSS-T2DM as well as the nondirective support items was satisfactory with Cronbach’sα≥7.00.70.Conclusions:Our study supported the validity and reliability of the 7-item DNSS-T2DM.Further studies on the application of the DNSS-T2DM in different settings and population are needed.展开更多
基金supported by the Strategic Research and Consulting Project of Chinese Academy of Engineering(2022-XY-91)the Basic Science Center Project for National Natural Science Foundation of China(72088101)the Key Project of YueLuShan Center Industrial Innovation(2023YCII0105).
文摘The steel industry is considered an important basic sector of the national economy,and its high energy consumption and carbon emissions make it a major contributor to climate change,especially in China.The majority of crude steel in China is produced via the energy-and carbon-intensive blast furnace–basic oxygen furnace(BF–BOF)route,which greatly relies on coking coal.In recent years,China’s steel sector has made significant progress in energy conservation and emission reduction,driven by decarbonization policies and regulations.However,due to the huge output of crude steel,the steel sector still produces 15%of the total national CO_(2) emissions.The direct reduced iron(DRI)plus scrap–electric arc furnace(EAF)process is currently considered a good alternative to the conventional route as a means of reducing CO_(2) emissions and the steel industry’s reliance on iron ore and coking coal,since the gas-based DRI plus scrap–EAF route is expected to be more promising than the coal-based one.Unfortunately,almost no DRI is produced in China,seriously restricting the development of the EAF route.Here,we highlight the challenges and pathways of the future development of DRI,with a focus on China.In the short term,replacing natural gas with coke oven gas(COG)and byproduct gas from the integrated refining and chemical sector is a more economically feasible and cleaner way to develop a gas-based route in China.As the energy revolution proceeds,using fossil fuels in combination with carbon capture,utilization,and storage(CCUS)and hydrogen will be a good alternative due to the relatively low cost.In the long term,DRI is expected to be produced using 100%hydrogen from renewable energy.Both the development of deep processing technologies and the invention of a novel binder are required to prepare high-quality pellets for direct reduction(DR),and further research on the one-step gas-based process is necessary.
基金Basic Research Business Funding Project for Public Welfare Research Institutes in the Autonomous Region in 2022(kyys202201).
文摘In this paper,the definition,connotation,and internal relationship of mountains,rivers,forests,farmlands,lakes,and grasslands in China are elaborated,and the current situation of ecological restoration projects for mountains,rivers,forests,farmlands,lakes,and grasslands was introduced.Moreover,the problems that have arisen in the specific implementation process of pilot projects were analyzed,such as unclear target positioning,inaccurate analysis of ecological problems,insufficient engineering design systematicness,weak operability of evaluation standards,and weak coordination in engineering management.The development direction and major needs for the protection and restoration of mountains,rivers,forests,farmlands,lakes,and grasslands in the future have been proposed from four aspects:theoretical research,engineering design,effect evaluation,and monitoring and supervision.
基金supported by a project of shale gas in Southern China(DD20190561)initiated by the China Geological Surveythe project for High-level Innovative Talents in Science and Technology,Ministry of Natural Resources(12110600000018003918)。
文摘The shale gas resources in China have great potential and the geological resources of shale gas is over 100×10^(12)m^(3),which includes about 20×10^(12)m^(3) of recoverable resources.Organic-rich shales can be divided into three types according to their sedimentary environments,namely marine,marine-continental transitional,and continental shales,which are distributed in 13 stratigraphic systems from the Mesoproterozoic to the Cenozoic.The Sichuan Basin and its surrounding areas have the highest geological resources of shale gas,and the commercial development of shale gas has been achieved in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in these areas,with a shale gas production of up to 20×10^(9)m^(3) in 2020.China has seen rapid shale gas exploration and development over the last five years,successively achieving breakthroughs and important findings in many areas and strata.The details are as follows.(1)Large-scale development of middle-shallow shale gas(burial depth:less than 3500 m)has been realized,with the productivity having rapidly increased;(2)breakthroughs have been constantly made in the development of deep shale gas(burial depth:3500-4500 m),and the ultradeep shale gas(burial depth:greater than 4500 m)is under testing;(3)breakthroughs have been made in the development of normal-pressure shale gas,and the assessment of the shale gas in complex tectonic areas is being accelerated;(4)shale gas has been frequently discovered in new areas and new strata,exhibiting a great prospect.Based on the exploration and development practice,three aspects of consensus have been gradually reached on the research progress in the geological theories of shale gas achieved in China.(1)in terms of deep-water fine-grained sediments,organic-rich shales are the base for the formation of shale gas;(2)in terms of high-quality reservoirs,the development of micro-nano organic matter-hosted pores serves as the core of shale gas accumulation;(3)in terms of preservation conditions,weak structural transformation,a moderate degree of thermal evolution,and a high pressure coefficient are the key to shale gas enrichment.As a type of important low-carbon fossil energy,shale gas will play an increasingly important role in achieving the strategic goals of peak carbon dioxide emissions and carbon neutrality.Based on the in-depth study of shale gas geological conditions and current exploration progress,three important directions for shale gas exploration in China in the next five years are put forward.
基金Supported by the China National Science and Technology Major Project(2016ZX05023)Petro China Science and Technology Major Project(2018E-1809)。
文摘By reviewing the development history of stimulation techniques for deep/ultra-deep oil and gas reservoirs,the new progress in this field in China and abroad has been summed up,including deeper understanding on formation mechanisms of fracture network in deep/ultra-deep oil and gas reservoir,performance improvement of fracturing fluid materials,fine stratification of ultra-deep vertical wells,and mature staged multi-cluster fracturing technique for ultra-deep and highly deviated wells/horizontal wells.In light of the exploration and development trend of ultra-deep oil and gas reservoirs in China,the requirements and technical difficulties in ultra-deep oil and gas reservoir stimulation are discussed:(1)The research and application of integrated geological engineering technology is difficult.(2)The requirements on fracturing materials for stimulation are high.(3)It is difficult to further improve the production in vertical profile of the ultra-deep and hugely thick reservoirs.(4)The requirements on tools and supporting high-pressure equipment on the ground for stimulation are high.(5)It is difficult to achieve efficient stimulation of ultra-deep,high-temperature and high-pressure wells.(6)It is difficult to monitor directly the reservoir stimulation and evaluate the stimulation effect accurately after stimulation.In line with the complex geological characteristics of ultra-deep oil and gas reservoirs in China,seven technical development directions are proposed:(1)To establish systematic new techniques for basic research and evaluation experiments;(2)to strengthen geological research and improve the operational mechanism of integrating geological research and engineering operation;(3)to develop high-efficiency fracturing materials for ultra-deep reservoirs;(4)to research separated layer fracturing technology for ultra-deep and hugely thick reservoirs;(5)to explore fracture-control stimulation technology for ultra-deep horizontal well;(6)to develop direct monitoring technology for hydraulic fractures in ultra-deep oil and gas reservoirs;(7)to develop downhole fracturing tools with high temperature and high pressure tolerance and supporting wellhead equipment able to withstand high pressure.
文摘This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technological development directions of overseas business to overcome the challenges met in overseas oil and gas production. In the course of PetroChina’s overseas oil and gas field production practice of more than 20 years, a series of characteristic technologies suitable for overseas oil and gas fields have been created by combining the domestic mature oil and gas field production technologies with the features of overseas oil and gas reservoirs, represented by the technology for high-speed development and stabilizing oil production and controlling water rise for overseas sandstone oilfields, high efficiency development technology for large carbonate oil and gas reservoirs and foamy oil depletion development technology in use of horizontal wells for extra-heavy oil reservoirs. Based on in-depth analysis of the challenges faced by overseas oil and gas development and technological requirements, combined with the development trends of oil and gas development technologies in China and abroad, overseas oil and gas development technologies in the future are put forward, including artificial intelligence reservoir prediction and 3 D geological modeling, secondary development and enhanced oil recovery(EOR) of overseas sandstone oilfields after high speed development, water and gas injection to improve oil recovery in overseas carbonate oil and gas reservoirs, economic and effective development of overseas unconventional oil and gas reservoirs, efficient development of marine deep-water oil and gas reservoirs. The following goals are expected to be achieved: keep the enhanced oil recovery(EOR) technology for high water-cut sandstone oilfield at international advanced level, and make the development technology for carbonate oil and gas reservoirs reach the international advanced level, and the development technologies for unconventional and marine deep-water oil and gas reservoirs catch up the level of international leading oil companies quickly.
文摘With the rapid development of electronic commerce, supply chain management is facing more and more new challenges. Therefore, it is particularly important to study the development of clear direction of supply chain. However, the supply chain is composed of different interest subjects, each subject in order to achieve the maximization of their own interests and adopt different measures, is a complex, huge system, has brought the huge challenge to the supply chain management. In this paper, the research on Supply Chain Management in the current situation, characteristics and the modem supply chain management are summarized, and combined with new challenges of supply chain management to predict future research direction is the development of supply chain management, in order to make the supply chain management to the greatest extent satisfy the consumer e-commerce mode increasingly popular.
基金Supported by the Subprogram " the Mechanization Development of High Speed Rice Sowing-Rice Direct Sowing Machine" of the Programs of Science Research for the "10th Five-year Plan" of MinistryScience and Technology (2001BA504B01-02)~~
文摘[Objective] The aim was to introduce the development and application of 2BDQ-8 rice direct sowing machine and provide a theoretical basis for rice mechanization production. [Method] 2BDQ-8 rice direct sowing machine was used for the promotion test in field of several cities and counties in Jiangsu Province,and artificial rice planting and mechanization rice planting were compared to explore the production and economic situation. [Result] 2BDQ-8 rice direct sowing machine had advantages such as high efficiency and low cost,the rice direct sowing machine saved about 30% compared to the artificial rice planting and mechanization rice planting,and the overall efficiency was significant. [Conclusion] 2BDQ-8 rice sowing machine was a production technology that had low cost and high efficiency,which should be widely applied.
基金funded by U.S.Air Force Office of Scientific Research,No.FA9550-21-1-0096FONDAP program,No.15150012+1 种基金Department of Defense grant,Nos.W81XWH2110960,ANID/FONDEF ID1ID22I10120,and ANID/NAM22I0057Swiss Consolidation Grant-The Leading House for the Latin American Region(all to CH)。
文摘As the life expectancy of the world’s population increases,age-related diseases are emerging as one of the greatest problems facing modern society.The onset of dementia and neurodegenerative diseases is strictly dependent on aging as a major risk factor and has a profound impact on various aspects of the lives of individuals and their families.
基金Project supported by the National Natural Science Foundation of China(Grant No.12175001)the Key Project of Natural Science Research of West Anhui University(Grant No.WXZR202311)+7 种基金the Natural Science Research Key Project of Education Department of Anhui Province of China(Grant Nos.KJ2021A0943,2022AH051681,and 2023AH052648)the Open Fund of Anhui Undergrowth Crop Intelligent Equipment Engineering Research Center(Grant No.AUCIEERC-2022-01)Anhui Undergrowth Crop Intelligent Equipment Engineering Research Center(Grant No.2022AH010091)the University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2021-026)the Anhui Provincial Natural Science Foundation(Grant Nos.2108085MA18 and 2008085MA20)Key Project of Program for Excellent Young Talents of Anhui Universities(Grant No.gxyq ZD2019042)the open project of the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes(Grant No.FMDI202106)the research start-up funding project of High Level Talent of West Anhui University(Grant No.WGKQ2021048)。
文摘Einstein–Podolsky–Rosen(EPR) steering is an example of nontrivial quantum nonlocality and characteristic in the non-classical world.The directivity(or asymmetry) is a fascinating trait of EPR steering,and it is different from other quantum nonlocalities.Here,we consider the strategy in which two atoms compose a two-qubit X state,and the two atoms are owned by Alice and Bob,respectively.The atom of Alice suffers from a reservoir,and the atom of Bob couples with a bit flip channel.The influences of auxiliary qubits on EPR steering and its directions are revealed by means of the entropy uncertainty relation.The results indicate that EPR steering declines with growing time t when adding fewer auxiliary qubits.The EPR steering behaves as damped oscillation when introducing more auxiliary qubits in the strong coupling regime.In the weak coupling regime,the EPR steering monotonously decreases as t increases when coupling auxiliary qubits.The increases in auxiliary qubits are responsible for the fact that the steerability from Alice to Bob(or from Bob to Alice) can be more effectively revealed.Notably,the introductions of more auxiliary qubits can change the situation that steerability from Alice to Bob is certain to a situation in which steerability from Bob to Alice is certain.
基金the Zanjan Zinc Khalessazan Industries Company (ZZKICO) for the financial and technical support of this work
文摘The direct leaching kinetics of an iron-poor zinc sulfide concentrate in the tubular reactor was examined.All tests werecarried out in the pilot plant.To allow the execution of hydrostatic pressure condition,the slurry with ferrous sulfate and sulfuric acidsolution was filled into a vertical tube(9m in height)and air was blown from the bottom of the reactor.The effects of initial acidconcentration,temperature,particle size,initial zinc sulfate concentration,pulp density and the concentration of Fe on the leachingkinetics were investigated.Results of the kinetic analysis indicate that direct leaching of zinc sulfide concentrate follows shrinkingcore model(SCM).This process was controlled by a chemical reaction with the apparent activation energy of49.7kJ/mol.Furthermore,a semi-empirical equation is obtained,showing that the order of the iron,sulfuric acid and zinc sulfate concentrationsand particle radius are0.982,0.189,-0.097and-0.992,respectively.Analysis of the unreacted and reacted sulfide particles bySEM-EDS shows that insensitive agitation in the reactor causes detachment of the sulfur layer from the particles surface in lowerthan60%Zn conversion and lixiviant in the face with sphalerite particles.
基金Supported by the National Natural Science Foundation of China (50805010) the Natural Science Foundation of Shaanxi Province (2011JM70 17)
文摘In coalmines of China, horizontal directional drilling (HDD) is an increasingly popular method for underground in-seam gas drainage. Numerical simulation, especially finite element analysis, is often used as an effective method to improve HDD operation. These improvements focus on rock-breaking efficiency, directional precision, stability of the borehole wall, and reliability of the drill equipment. On the basis of underground drilling characteristics, typical numerical simulation exam- ples in drilling techniques and equipment are summarized and analyzed. In the end, the future development trends of numerical simulation in underground in-seam drilling are proposed.
基金the National Natural Science Foundation of China(No.4207741741671042)。
文摘Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and treering chronologies developed on northern and western slopes from the Lubanling in the Funiu Mountains.Correlation analyses showed that two chronologies were mainly limited by temperatures in the previous June–August and the combination of temperatures and moisture in the current May–July.The difference of the climate response to slopes was small but not negligible.Radial growth of the LBL01 site on the northern slope was affected by the combined maximum and minimum temperatures,while that of the LBL02 site was affected by maximum temperatures.With regards to moisture,radial growth of the trees on the north slope was influenced by the relative humidity in the current May–July,while on the western slope,it was affected by the relative humidity in the previous June–August,the current May–July and the precipitation in the current May–July.With the change in climate,the effects of the main limiting factors on growth on different slopes were visible to a certain extent,but the differences in response of trees on different slopes gradually decreased,which might be caused by factors such as different slope directions and the change in diurnal temperature range.These results may provide information for forest protection and ecological construction in this region,and a scientific reference for future climate reconstruction.
基金supported by the National Natural Science Foundation of China (No.42077417,41671042).
文摘Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and tree-ring chronologies developed on northern and western slopes from the Lubanling in the Funiu Mountains.Correlation analyses showed that two chronologies were mainly limited by temperatures in the previous June-August and the com-bination of temperatures and moisture in the current May-July.The difference of the climate response to slopes was small but not negligible.Radial growth of the LBLO1 site on the northern slope was affected by the combined maximum and minimum temperatures,while that of the LBLO2 site was affected by maximum temperatures.With regards to moisture,radial growth of the trees on the north slope was influenced by the relative humidity in the current May-July,while on the western slope,it was affected by the relative humidity in the previous June-August,the current May-July and the precipitation in the current May-July.With the change in climate,the effects of the main limiting factors on growth on different slopes were visible to a certain extent,but the differences in response of trees on different slopes gradually decreased,which might be caused by factors such as different slope directions and the change in diurnal temperature range.These results may provide information for forest protection and ecological construction in this region,and a scientific reference for future climate reconstruction.
文摘To probe into the directions and difficulties of standardization discipline construction in China,China Standardization Press organized a pertinent dialogue on July 10.During the event,Yu Xinli,President of China Association for Standardization,was invited as the moderator.Several standardization experts including Song Mingshun,Mai Lyubo,Qiang Yi,Cao Lili,and Huang Manxue from the China Standardization Expert Committee and renowned universities and research institutes in the country were invited as guests to give their insightful views.
基金Supported by the National Science and Technology Major Project(2016ZX05010,2016ZX05023).
文摘Through a comprehensive review of the development status of workover technology of PetroChina Company Limited(PetroChina), this paper presents the connotation of workover operation under the background of the new era, the latest progress of workover operation in the respects of equipment, tools, technology and the construction of information and standardization. The gaps between PetroChina and foreign counterpart in workover technology are as follows: the level of automation and intellectualization of tools and equipment is relatively low, the snubbing operation in gas wells characterized by HT/HP and high H2 S is lagged behind;water plugging in the long horizontal wellbore needs to be further developed, coiled tubing and its relevant equipment for ultra-deep well operation has to be optimized;informationization, standardization and big data application of workover operation need to be started. Based on this as well as the development status of workover technology in China and the technical difficulties faced in the future, eight suggestions for future development are put forward:(1) strengthen the dynamic understanding of reservoir and improve the pertinence of workover schemes;(2) develop the general overhaul technology in a systematical way to tackle issues of seriously problematic wells;(3) put more efforts into the research of horizontal well workover operation and develop relevant technology for long horizontal section operation;(4) improve the snubbing technology and extend its applications;(5) expand the capacity of coiled tubing operation and improve the level of special operations;(6) develop automatic workover technology into the field of artificial intelligence;(7) promote clean operation in an all-round way and build green oil and gas fields;(8) perfect the informationization construction to realize the sharing of workover resources.
基金financially supported by the National Natural Science Foundation of China (42461011, 42071014)the Fellowship of the China Postdoctoral Science Foundation (2021M703466)
文摘The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the protective benefits of High Density Polyethylene(HDPE)board sand fences,focusing on their orientation relative to various wind directions(referred to as'wind angle').This study found that the size of the low-velocity zone on the leeward side of the sand fences(LSF)expanded with an increase in the wind angle(WA).At 1H(the height of the sand fence)and 2H positions on the LSF,the wind speed profiles(WSP)exhibited a segmented logarithmic growth,constrained by Z=H at varying WAs.The efficacy of the sand fence in obstructing airflow escalated as WA increased.The size of the WA has a significant impact on the protective efficiency of HDPE board sand fences.Furthermore,compared to typical sandy surfaces,the rate of sand transport across the Gobi surface diminishes more slowly with height,attributed to the gravel's rebound effect.This phenomenon allows some sand particles to bypass the fences,rendering them less effective at blocking wind and trapping sand than in sandy environments.This paper offers scientific evidence supporting the practical use and enhancement of HDPE board sand fences in varied wind conditions.
文摘A direct time integration scheme based on Gauss-Legendre quadrature is proposed to solve problems in linear structural dynamics.The proposed method is a oneparameter non-dissipative scheme.Improved stability,accuracy,and dispersion characteristics are achieved using appropriate values of the parameter.The proposed scheme has second-order accuracy with and without physical damping.Moreover,its stability,accuracy,and dispersion are analyzed.In addition,its performance is demonstrated by the two-dimensional scalar wave problem,the single-degree-of-freedom problem,two degrees-of-freedom spring system,and beam with boundary constraints.The wave propagation problem is solved in the high frequency wave regime to demonstrate the advantage of the proposed scheme.When the proposed scheme is applied to solve the wave problem,more accurate solutions than those of other methods are obtained by using the appropriate value of the parameter.For the single-degree-offreedom system,two degrees-of-freedom system,and the time responses of beam,the proposed scheme can be used effectively owing to its high accuracy and lower computational cost.
基金The study was reviewed and approved by the Ethical Committee Faculty of Medicine,University of Indonesia(Approval No.KET-615/UN2.F1/ETIK/PPM.00.02/2020)Ethical Committee of Fatmawati General Hospital(Approval No.DM 01.01/VIII.2/1294/2020).
文摘BACKGROUND Adolescent idiopathic scoliosis remains a major problem due to its high incidence,high risk,and high cost.One of the aims of the management in scoliosis is to correct the deformity.Many techniques are available to correct scoliosis deformity;however,they are all far from ideal to achieve three-dimensional correction in scoliosis.AIM To develop a set of tools named Scoliocorrector Fatma-UI(SCFUI)to aid threedimensional correction and to evaluate the efficacy,safety,and functional outcome.METHODS This study consists of two stages.In the first stage,we developed the SCFUI and tested it in finite element and biomechanical tests.The second stage was a single-blinded randomized clinical trial to evaluate the SCFUI compared to direct vertebral rotation(DVR).Forty-four subjects with adolescent idiopathic scoliosis were randomly allocated into the DVR group(n=23)and SCFUI group(n=21).Radiological,neurological,and functional outcome was compared between the groups.RESULTS Finite element revealed the maximum stress of the SCFUI components to be between 31.2-252 MPa.Biomechanical analysis revealed the modulus elasticity of SCFUI was 9561324±633277 MPa.Both groups showed improvement in Cobb angle and sagittal profile,however the rotation angle was lower in the SCFUI group(11.59±7.46 vs 18.23±6.39,P=0.001).Neurological and functional outcome were comparable in both groups.CONCLUSION We concluded that SCFUI developed in this study resulted in similar coronal and sagittal but better rotational correction compared to DVR.The safety and functional outcomes were also similar to DVR.
文摘Objectives:This study aims to develop the Directive and Nondirective Support Scale for Patients with Type 2 Diabetes(DNSS-T2DM)to measure diabetes-specific support and patients’preference as well as evaluate the construct validity and reliability of the DNSS-T2DM.Methods:A cross-sectional study was conducted in Tongzhou District,Beijing,China from July to September 2015.A total of 474 participants who had been diagnosed as type 2 diabetes by physicians and completed the DNSS-T2DM were included.The original 11-item DNSS-T2DM contains five items on nondirective support(Items 1-5)and six items on directive support(Items 6-11).There were two parallel questions for each item with one to measure the preference for support(Preference part)and the other to measure the perception of support in reality(Reality part).The final DNSS-T2DM was determined based on the results of the exploratory factor analysis(EFA).The construct validity of the final DNSS-T2DM was evaluated by the confirmatory factor analysis(CFA).The reliability was evaluated by internal consistency with Cronbach’sαcoefficients.Results:A final 7-item DNSS-T2DM loaded on 2 factors with four items representing nondirective support and three items representing directive support was determined based on the EFA.The CFA indicated a satisfactory construct validity.The internal consistency of the 7-item DNSS-T2DM as well as the nondirective support items was satisfactory with Cronbach’sα≥7.00.70.Conclusions:Our study supported the validity and reliability of the 7-item DNSS-T2DM.Further studies on the application of the DNSS-T2DM in different settings and population are needed.