高光谱和多光谱图像融合旨在获取同时具有高空间分辨率和高光谱分辨率的高质量图像。然而,针对光谱变化中的高光谱和多光谱图像融合问题,全变分正则化方法仅仅是在空间梯度域对图像局部特性信息进行建模,没有考虑高光谱图像光谱信息间...高光谱和多光谱图像融合旨在获取同时具有高空间分辨率和高光谱分辨率的高质量图像。然而,针对光谱变化中的高光谱和多光谱图像融合问题,全变分正则化方法仅仅是在空间梯度域对图像局部特性信息进行建模,没有考虑高光谱图像光谱信息间的高阶相关性。针对上述问题,通过引入Schatten-0正则项,实现对光谱信息高阶相关性的建模,提出基于Schatten-0范数正则化的高光谱和多光谱图像融合方法。采用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)求解光谱变化中的融合问题。其中,Schatten-0正则项对应的子问题采用硬阈值迭代收缩算法求解。仿真实验验证了所提方法的可行性和有效性。可为更具有实际价值、更一般化的高光谱和多光谱图像融合应用提供理论与技术支撑。展开更多
In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding ...In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.展开更多
文摘高光谱和多光谱图像融合旨在获取同时具有高空间分辨率和高光谱分辨率的高质量图像。然而,针对光谱变化中的高光谱和多光谱图像融合问题,全变分正则化方法仅仅是在空间梯度域对图像局部特性信息进行建模,没有考虑高光谱图像光谱信息间的高阶相关性。针对上述问题,通过引入Schatten-0正则项,实现对光谱信息高阶相关性的建模,提出基于Schatten-0范数正则化的高光谱和多光谱图像融合方法。采用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)求解光谱变化中的融合问题。其中,Schatten-0正则项对应的子问题采用硬阈值迭代收缩算法求解。仿真实验验证了所提方法的可行性和有效性。可为更具有实际价值、更一般化的高光谱和多光谱图像融合应用提供理论与技术支撑。
基金Project supported by the National Natural Science Foundation of China (Grant No.10571116)
文摘In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.