Human cytomegalovirus virions contain three major glycoprotein complexes (gC I, II, III), all of which are required for CMV infectivity. These complexes also represent major antigenic targets for anti-viral immune res...Human cytomegalovirus virions contain three major glycoprotein complexes (gC I, II, III), all of which are required for CMV infectivity. These complexes also represent major antigenic targets for anti-viral immune responses. The gC II complex consists of two glycoproteins, gM and gN. In the current study, DNA vaccines expressing the murine cytomegalovirus (MCMV) homologs of the gM and gN proteins were evaluated for protection against lethal MCMV infection in a mouse model. Humoral and cellular immune responses, spleen viral titers, and mice survival and body-weight changes were examined. The results showed that immunization with gM or gN DNA vaccine alone was not able to offer good protection, whereas co-immunization with both gM and gN induced an effective neutralizing antibody response and cellular immune response, and provided mice with complete protection against a lethal MCMV challenge. This study provides the first in vivo evidence that the gC II (gM-gN) complex may be able to serve as a protective subunit antigen for future HCMV vaccine development.展开更多
Heat shock proteins (HSPs) serve to correct proteins’ conformation, send the damaged proteins for degradation (quality control function). Heat shock factors (HSFs) are their transcription factors. The protein complex...Heat shock proteins (HSPs) serve to correct proteins’ conformation, send the damaged proteins for degradation (quality control function). Heat shock factors (HSFs) are their transcription factors. The protein complexes mTOR1 and 2 (with the same core mTOR), the phosphoinositide-dependent protein kinase-1 (PDK1), the seine/threonine-specific protein kinase (Akt), HSF1, plus their associated proteins form a network participating in protein synthesis, bio-energy generation, signaling for apoptosis with the help of HSPs. A cancer cell synthesizes proteins at fast rate and needs more HSPs to work on quality control. Shutting down this network would lead to cell death. Thus inhibitors of mTOR (mTORI) and inhibitors of HSPs (HSPI) could drive cancer cell to apoptosis—a “passive approach”. On the other hand, HSPs form complexes with polypeptides characteristic of the cancer cells;on excretion from the cell, they becomes antigens for the immunity cells, eventually leading to maturation of the cytotoxic T cells, forming the basic principle of preparing cancer-specific, person-specific vaccine. Recent finding shows that HSP70 can penetrate cancer cell and expel its analog to extracellular region, giving the hope to prepare a non-person-specific vaccine covering a variety of cancers. Activation of anti-cancer immunity is the “active approach”. On the other hand, mild hyperthermia, with increase of intracellular HSPs, has been found to activate the immunity response, and demonstrate anti-cancer effects. There are certain “mysteries” behind the mechanisms of the active and passive approaches. We analyze the mechanisms involved and provide explanations to some mysteries. We also suggest future research to improve our understanding of these two approaches, in which HSPs play many roles.展开更多
Targeting delivery of tumor-associated carbohydrate antigen(TACA)-based vaccine to antigen-presenting cells(APCs)mediated by endogenous antibodies can improve the immunogenicity of TACA.However,an essential requiremen...Targeting delivery of tumor-associated carbohydrate antigen(TACA)-based vaccine to antigen-presenting cells(APCs)mediated by endogenous antibodies can improve the immunogenicity of TACA.However,an essential requirement of this approach is to generate high titers of endogenous antibodies in vivo through pre-immunization,which complicates the immunization procedure and may cause side effects.Herein,we report a new generation of APC-targeting TACA-based supramolecular complex vaccine,assembled by sialyl Thomsen-nouveau-bovine serum albumin-adamantine(sTn-BSA-Ada)and heptavalent rhamnose(Rha)-modifiedβ-cyclodextrin(β-CD)via host-guest interaction.The complex vaccine retained anti-Rha antibodies recruiting capability and facilitated the APCs uptake of the vaccine via the interaction of the Fc-domain with the Fc receptors on APCs.We demonstrate that direct immunization of complex vaccine elicited anti-Rha and anti-sTn specific immune response synchronously,generating a novel self-enhancement effect that can improve the antigen delivery to APCs in high efficacy.The structure-activity relationship(SAR)study proved that complex vaccine 4 with polyethylene glycol 6(PEG 6)linker in host molecule provoked a robust and specific sTn immune response comparable to the pre-immunization approach.The antisera induced by complex vaccine,either through direct immunization or pre-immunization,exhibited equal potency of cytotoxicity against the sTn expression cancer cells.This study provides a general platform for TACA-based vaccines with self-enhancement effects without the need for pre-immunization.展开更多
In this paper, a new susceptible-infected-susceptible (SIS) model on complex networks with imperfect vaccination is proposed. Two types of epidemic spreading patterns (the recovered individuals have or have not imm...In this paper, a new susceptible-infected-susceptible (SIS) model on complex networks with imperfect vaccination is proposed. Two types of epidemic spreading patterns (the recovered individuals have or have not immunity) on scale-free networks are discussed. Both theoretical and numerical analyses are presented. The epidemic thresholds related to the vaccination rate, the vaccination-invalid rate and the vaccination success rate on scale-free networks are demonstrated, showing different results from the reported observations. This reveals that whether or not the epidemic can spread over a network under vaccination control is determined not only by the network structure but also by the medicine's effective duration. Moreover, for a given infective rate, the proportion of individuals to vaccinate can be calculated theoretically for the case that the recovered nodes have immunity. Finally, simulated results are presented to show how to control the disease prevalence.展开更多
Objective: To improve DC-based tumor vaccination, we studied whether dendritic ceils (DCs) which cocultured with H22 liver cancer cells-derived heat shock protein (HSP) glycoprotein 96 (gp96) affect the T cell-...Objective: To improve DC-based tumor vaccination, we studied whether dendritic ceils (DCs) which cocultured with H22 liver cancer cells-derived heat shock protein (HSP) glycoprotein 96 (gp96) affect the T cell-activating potential in vitro and the induction of tumor immunity in vivo. Methods: Maturation of murine bone marrow-derived DC was induced by GM-CSF plus IL-4, which mimiced the immunostimulatory effect of DC. Cocultured DC and gp96-peptide complexes were used to vaccine H22 liver cancer cells of mice. Using murine models we compared the immunogenecity of DC modified by gp96-peptides complexes derived from murine liver cancer cells alone or inactive tumor cells. To verify the specificity of the vaccine, in vitro assays were executed. Serum cytokine levels were quantified to explore the supposed pathway of DC modified by gp96 peptide complexes and its effect on antitumor immune response. Results: DC modified by gp96-peptide complexes can activate spleen lymphocyte and the latter can specifically kill H22 cells but not Ehrilich ascites carcinoma cells. Modified DC can induce potent tumor-antigenspecific immune response, augment the proliferation of Thl cells, and inhibit tumor growth. Conclusion: In this study, we have developed a novel DC-mediated tumor vaccine by combing the gp96 antigenic peptides complexes and inducing immune response against specific tumor cells, gp96 can be identified as a potent DC activator.展开更多
A 19-year-old Japanese woman was referred to us with the complaints of arthralgia and meralgia following human papillomavirus (HPV) vaccination. She received HPV vaccination at the age of 15 years and three years late...A 19-year-old Japanese woman was referred to us with the complaints of arthralgia and meralgia following human papillomavirus (HPV) vaccination. She received HPV vaccination at the age of 15 years and three years later, she developed intermittent arthralgia, meralgia, and numbness in limbs. There were no orthostatic dysregulation symptoms. She had hypertelorism, and brachydactyly in both the hands, and revealed mild cubitus varus deformity with lateral instability. X-ray examination disclosed hypoplasia of the humeral capitellum and trochlea in elbow joints. G-banded chromosomes were shown to be composed of 48, XXXX. She was, therefore, diagnosed with XXXX syndrome, which explained the reason for her limb symptoms. Although some girls with HPV vaccination complain of various symptoms including limb pain and numbness, exact underlying cause of these symptoms needs to be ascertained carefully for reaching a final diagnosis.展开更多
基金supported by the Innovation Platform Open Fund of Hunan Provincial Education Department (11K010)a research fund from Hunan Provincial Science and Technology Development (2008TP4033-2)
文摘Human cytomegalovirus virions contain three major glycoprotein complexes (gC I, II, III), all of which are required for CMV infectivity. These complexes also represent major antigenic targets for anti-viral immune responses. The gC II complex consists of two glycoproteins, gM and gN. In the current study, DNA vaccines expressing the murine cytomegalovirus (MCMV) homologs of the gM and gN proteins were evaluated for protection against lethal MCMV infection in a mouse model. Humoral and cellular immune responses, spleen viral titers, and mice survival and body-weight changes were examined. The results showed that immunization with gM or gN DNA vaccine alone was not able to offer good protection, whereas co-immunization with both gM and gN induced an effective neutralizing antibody response and cellular immune response, and provided mice with complete protection against a lethal MCMV challenge. This study provides the first in vivo evidence that the gC II (gM-gN) complex may be able to serve as a protective subunit antigen for future HCMV vaccine development.
文摘Heat shock proteins (HSPs) serve to correct proteins’ conformation, send the damaged proteins for degradation (quality control function). Heat shock factors (HSFs) are their transcription factors. The protein complexes mTOR1 and 2 (with the same core mTOR), the phosphoinositide-dependent protein kinase-1 (PDK1), the seine/threonine-specific protein kinase (Akt), HSF1, plus their associated proteins form a network participating in protein synthesis, bio-energy generation, signaling for apoptosis with the help of HSPs. A cancer cell synthesizes proteins at fast rate and needs more HSPs to work on quality control. Shutting down this network would lead to cell death. Thus inhibitors of mTOR (mTORI) and inhibitors of HSPs (HSPI) could drive cancer cell to apoptosis—a “passive approach”. On the other hand, HSPs form complexes with polypeptides characteristic of the cancer cells;on excretion from the cell, they becomes antigens for the immunity cells, eventually leading to maturation of the cytotoxic T cells, forming the basic principle of preparing cancer-specific, person-specific vaccine. Recent finding shows that HSP70 can penetrate cancer cell and expel its analog to extracellular region, giving the hope to prepare a non-person-specific vaccine covering a variety of cancers. Activation of anti-cancer immunity is the “active approach”. On the other hand, mild hyperthermia, with increase of intracellular HSPs, has been found to activate the immunity response, and demonstrate anti-cancer effects. There are certain “mysteries” behind the mechanisms of the active and passive approaches. We analyze the mechanisms involved and provide explanations to some mysteries. We also suggest future research to improve our understanding of these two approaches, in which HSPs play many roles.
基金supported by the National Natural Science Foundation of China(No.22177040)the Natural Science Foundation of Jiangsu Province(No.BK20200601)partly funded by the 111 Project(No.111-2-06).
文摘Targeting delivery of tumor-associated carbohydrate antigen(TACA)-based vaccine to antigen-presenting cells(APCs)mediated by endogenous antibodies can improve the immunogenicity of TACA.However,an essential requirement of this approach is to generate high titers of endogenous antibodies in vivo through pre-immunization,which complicates the immunization procedure and may cause side effects.Herein,we report a new generation of APC-targeting TACA-based supramolecular complex vaccine,assembled by sialyl Thomsen-nouveau-bovine serum albumin-adamantine(sTn-BSA-Ada)and heptavalent rhamnose(Rha)-modifiedβ-cyclodextrin(β-CD)via host-guest interaction.The complex vaccine retained anti-Rha antibodies recruiting capability and facilitated the APCs uptake of the vaccine via the interaction of the Fc-domain with the Fc receptors on APCs.We demonstrate that direct immunization of complex vaccine elicited anti-Rha and anti-sTn specific immune response synchronously,generating a novel self-enhancement effect that can improve the antigen delivery to APCs in high efficacy.The structure-activity relationship(SAR)study proved that complex vaccine 4 with polyethylene glycol 6(PEG 6)linker in host molecule provoked a robust and specific sTn immune response comparable to the pre-immunization approach.The antisera induced by complex vaccine,either through direct immunization or pre-immunization,exhibited equal potency of cytotoxicity against the sTn expression cancer cells.This study provides a general platform for TACA-based vaccines with self-enhancement effects without the need for pre-immunization.
基金supported by the National Natural Science Foundation of China (Grant Nos 60674093,10832006)the Hong Kong Research Grants Council under Grant CityU 1117/08E
文摘In this paper, a new susceptible-infected-susceptible (SIS) model on complex networks with imperfect vaccination is proposed. Two types of epidemic spreading patterns (the recovered individuals have or have not immunity) on scale-free networks are discussed. Both theoretical and numerical analyses are presented. The epidemic thresholds related to the vaccination rate, the vaccination-invalid rate and the vaccination success rate on scale-free networks are demonstrated, showing different results from the reported observations. This reveals that whether or not the epidemic can spread over a network under vaccination control is determined not only by the network structure but also by the medicine's effective duration. Moreover, for a given infective rate, the proportion of individuals to vaccinate can be calculated theoretically for the case that the recovered nodes have immunity. Finally, simulated results are presented to show how to control the disease prevalence.
基金Supported by the National Natural Science Foundation of China (No. 30200369)
文摘Objective: To improve DC-based tumor vaccination, we studied whether dendritic ceils (DCs) which cocultured with H22 liver cancer cells-derived heat shock protein (HSP) glycoprotein 96 (gp96) affect the T cell-activating potential in vitro and the induction of tumor immunity in vivo. Methods: Maturation of murine bone marrow-derived DC was induced by GM-CSF plus IL-4, which mimiced the immunostimulatory effect of DC. Cocultured DC and gp96-peptide complexes were used to vaccine H22 liver cancer cells of mice. Using murine models we compared the immunogenecity of DC modified by gp96-peptides complexes derived from murine liver cancer cells alone or inactive tumor cells. To verify the specificity of the vaccine, in vitro assays were executed. Serum cytokine levels were quantified to explore the supposed pathway of DC modified by gp96 peptide complexes and its effect on antitumor immune response. Results: DC modified by gp96-peptide complexes can activate spleen lymphocyte and the latter can specifically kill H22 cells but not Ehrilich ascites carcinoma cells. Modified DC can induce potent tumor-antigenspecific immune response, augment the proliferation of Thl cells, and inhibit tumor growth. Conclusion: In this study, we have developed a novel DC-mediated tumor vaccine by combing the gp96 antigenic peptides complexes and inducing immune response against specific tumor cells, gp96 can be identified as a potent DC activator.
文摘A 19-year-old Japanese woman was referred to us with the complaints of arthralgia and meralgia following human papillomavirus (HPV) vaccination. She received HPV vaccination at the age of 15 years and three years later, she developed intermittent arthralgia, meralgia, and numbness in limbs. There were no orthostatic dysregulation symptoms. She had hypertelorism, and brachydactyly in both the hands, and revealed mild cubitus varus deformity with lateral instability. X-ray examination disclosed hypoplasia of the humeral capitellum and trochlea in elbow joints. G-banded chromosomes were shown to be composed of 48, XXXX. She was, therefore, diagnosed with XXXX syndrome, which explained the reason for her limb symptoms. Although some girls with HPV vaccination complain of various symptoms including limb pain and numbness, exact underlying cause of these symptoms needs to be ascertained carefully for reaching a final diagnosis.