期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
IBN Rings and Orderings on Grothendieck Groups 被引量:6
1
作者 Tong Wenting Department of Mathematics Nanjing University Nanjing,210008 China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1994年第3期225-230,共6页
Let R be a ring with an identity element.R∈IBN means that R<sup>m</sup>■R<sup>n</sup> implies m=n,R ∈IBN<sub>1</sub> means that R<sup>m</sup> ■R<sup>n</sup&... Let R be a ring with an identity element.R∈IBN means that R<sup>m</sup>■R<sup>n</sup> implies m=n,R ∈IBN<sub>1</sub> means that R<sup>m</sup> ■R<sup>n</sup>⊕K implies m≥n,and R ∈IBN<sub>2</sub> means that R<sup>m</sup>■R<sup>m</sup>⊕K implies K=0.In this paper we give some characteristic properties of IBN<sub>1</sub> and IBN<sub>2</sub>,with orderings o the Grothendieck groups.In addition,we obtain the following results:(1)If R ∈IBM<sub>1</sub> and all finitely generated projective left R-modules are stably free,then the Grothendieck group K<sub>o</sub>(R)is a totally ordered abelian group.(2)If the pre-ordering of the Grothendieck group K<sub>o</sub>(R)of a ring R is a partial ordering,then R ∈IBM<sub>1</sub> or K<sub>o</sub>(R)=0. 展开更多
关键词 ibn rings and Orderings on Grothendieck Groups MATH PSF
原文传递
Computation of K0(RMNS_(θ,h))
2
作者 Hao Zhifeng (Dept. of Applied Math.,South China Univ. of Tech.,Guangzhou,510641) 《Chinese Quarterly Journal of Mathematics》 CSCD 1998年第3期29-31, ,共3页
Let T=RM NS (θ,φ) and θ=0. We use a complete different technique to obtain the generalize results for K 0(T), i.e., K 0(T/I)K 0(R)K 0(S/NM) and K 0(T/J(T)) K 0(R/J(R))K(S/J(S)).
关键词 K 0 group Jacoboson radical semilocal ring ibn ring
下载PDF
The Torsion-Freeness of Partially Ordered K0-Groups for a Class of Exchange Rings 被引量:3
3
作者 WU Kuo Hua LV Xin Min 《Journal of Mathematical Research and Exposition》 CSCD 2009年第2期367-370,共4页
A ring R is called orthogonal if for any two idempotents e and f in R, the condition that e and f are orthogonal in R implies the condition that [eR] and [fR] are orthogonal in K0(R)+, i.e., [eR]∧[fR] = 0. In this pa... A ring R is called orthogonal if for any two idempotents e and f in R, the condition that e and f are orthogonal in R implies the condition that [eR] and [fR] are orthogonal in K0(R)+, i.e., [eR]∧[fR] = 0. In this paper, we shall prove that the K0-group of every orthogonal, IBN2 exchange ring is always torsion-free, which generalizes the main result in [3]. 展开更多
关键词 ibn2 ring Orthogonal ring Ko-group Partially ordered Abelian group l-group.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部