Objective With the development of analytic technologies, in-situ dating on U-bearing oxide minerals (e.g., cassiterite, rutile and baddeleyite) has been widely used in geological chronological researches and has at...Objective With the development of analytic technologies, in-situ dating on U-bearing oxide minerals (e.g., cassiterite, rutile and baddeleyite) has been widely used in geological chronological researches and has attracted remarkable attention to explore evolution of the earth and obtain age information of various geological processes. Matrix effect related studies are especially important during in-situ U- Pb dating based on Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC- ICPMS). However, to our knowledge, only few thorough and systematical matrix effect study of U-bearing oxide minerals has been reported. In this study, we systematically analyzed the matrix effect of U-bearing oxide minerals in order to take place the standards which are difficult to prepare with available standards.展开更多
基金financially supported by the National Natural Science Foundation of China(grants No.41503052 and 41373053)the National Science and Technology Infrastructure(grant No.DDK14-39)
文摘Objective With the development of analytic technologies, in-situ dating on U-bearing oxide minerals (e.g., cassiterite, rutile and baddeleyite) has been widely used in geological chronological researches and has attracted remarkable attention to explore evolution of the earth and obtain age information of various geological processes. Matrix effect related studies are especially important during in-situ U- Pb dating based on Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC- ICPMS). However, to our knowledge, only few thorough and systematical matrix effect study of U-bearing oxide minerals has been reported. In this study, we systematically analyzed the matrix effect of U-bearing oxide minerals in order to take place the standards which are difficult to prepare with available standards.