期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
DOA estimation of incoherently distributed sources using importance sampling maximum likelihood 被引量:1
1
作者 WU Tao DENG Zhenghong +2 位作者 HU Xiaoxiang LI Ao XU Jiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期845-855,共11页
In this paper, an importance sampling maximum likelihood(ISML) estimator for direction-of-arrival(DOA) of incoherently distributed(ID) sources is proposed. Starting from the maximum likelihood estimation description o... In this paper, an importance sampling maximum likelihood(ISML) estimator for direction-of-arrival(DOA) of incoherently distributed(ID) sources is proposed. Starting from the maximum likelihood estimation description of the uniform linear array(ULA), a decoupled concentrated likelihood function(CLF) is presented. A new objective function based on CLF which can obtain a closed-form solution of global maximum is constructed according to Pincus theorem. To obtain the optimal value of the objective function which is a complex high-dimensional integral,we propose an importance sampling approach based on Monte Carlo random calculation. Next, an importance function is derived, which can simplify the problem of generating random vector from a high-dimensional probability density function(PDF) to generate random variable from a one-dimensional PDF. Compared with the existing maximum likelihood(ML) algorithms for DOA estimation of ID sources, the proposed algorithm does not require initial estimates, and its performance is closer to CramerRao lower bound(CRLB). The proposed algorithm performs better than the existing methods when the interval between sources to be estimated is small and in low signal to noise ratio(SNR)scenarios. 展开更多
关键词 direction-of-arrival(DOA)estimation incoherently distributed(id)sources importance sampling maximum likelihood(ISML) Monte Carlo random calculation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部