In this paper, we present the implementation of a built-in current sensor (BICS) which takes into account the increased background current of defect-free circuits and the effects of process variation on ΔIDDQ testing...In this paper, we present the implementation of a built-in current sensor (BICS) which takes into account the increased background current of defect-free circuits and the effects of process variation on ΔIDDQ testing of CMOS data converters. A 12-bit digital-to-analog converter (DAC) is designed as the circuit under test (CUT). The BICS uses frequency as the output for fault detection in CUT. A fault is detected if it causes the output frequency to deviate more than ±10% from the reference frequency. The output frequencies of the BICS for various (MOSIS) model parameters are simulated to check for the effect of process variation on the frequency deviation. A set of eight faults simulating manufacturing defects in CMOS data converters are injected using fault-injection transistors and tested successfully.展开更多
文摘In this paper, we present the implementation of a built-in current sensor (BICS) which takes into account the increased background current of defect-free circuits and the effects of process variation on ΔIDDQ testing of CMOS data converters. A 12-bit digital-to-analog converter (DAC) is designed as the circuit under test (CUT). The BICS uses frequency as the output for fault detection in CUT. A fault is detected if it causes the output frequency to deviate more than ±10% from the reference frequency. The output frequencies of the BICS for various (MOSIS) model parameters are simulated to check for the effect of process variation on the frequency deviation. A set of eight faults simulating manufacturing defects in CMOS data converters are injected using fault-injection transistors and tested successfully.