[ Objective ] The paper was to explore effects of Echinacea polysaccharide (EPS) on expression of NF-KB protein secreted by LPS-injured IEC-6 cells, and to provide a theoretical basis for clinical application of Ech...[ Objective ] The paper was to explore effects of Echinacea polysaccharide (EPS) on expression of NF-KB protein secreted by LPS-injured IEC-6 cells, and to provide a theoretical basis for clinical application of Echinacea purpurea against bacterial diseases and enhancement of immunity. [ Method] Nucleoprotein extracted from IEC-6 cells in normal control group, LPS group, different concentrations of EPS (50, 100,200,500 μg/mL) + LPS groups were detected by SDS- PAGE electrophoresis, and the content of NF-κB protein was analyzed using western blotting method. [ Result ] The content of NF-KB protein in normal control group was the lowest, while that in LPS group was the highest. The content of NF-κB protein in EPS group gradually decreased with the increasing concentration of EPS. [ Result] The expression of NF-κB protein increased when IEC-6 cells were stimulated by LPS, and EPS could effectively inhibit increased expression of NF- κB protein. With the increasing concentration of EPS, the inhibition effect against increased expression of NF-κB protein gradually strengthened.展开更多
Objective: To explore the effects of γ-irradiation on mitogen-activated protein kinases (MAPKs) and role of intracellular calcium in this event in intestinal epithelial cell line 6 (IEC-6 cells). Methods: After cultu...Objective: To explore the effects of γ-irradiation on mitogen-activated protein kinases (MAPKs) and role of intracellular calcium in this event in intestinal epithelial cell line 6 (IEC-6 cells). Methods: After cultured rat IIEC-6 cells with or without the pretreatment of intracellular Ca2+ chelator were exposed to Y-ir-radiation of 6 Gy, the total and phosphorylated MAPKs in the cells were determined with Western blotting and apoptosis was examined with flow cytometry. Activities of Extracellular signal-regulated protein kinase (ERK) and p38 MAPK were determined by using immuoprecipitation followed by Western blotting. Results: In response to γ-irradiation, phosphorylation of ERK was not significantly observed, while the levels of phosphorylated c-Jun NH2-terminal kinase (JNK) and p38 MAPK were increased in 30 min and reached the peak 2 h after exposure to 6 Gy γ-irradiation, though the cell viability was significantly lowered 12 h. On the other hand, no obvious changes were seen in the total protein levels of ERK, JNK and p38 MAPK. Chelation of intracellular Ca2+ almost completely suppressed the JNK and p38 MAPK phosphorylation induced by γ-irradia-tion, but removal of external Ca2+ had no such effect. Activation of p38 MAPK, but not of ERK, was seen to have a correlation with γ-irradiation induced apoptosis. Conclusion: The results suggest that γ-irradiation is a potent activator for JNK and p38 MAPK, and Ca2+ mobilized from intracellular stores plays an important role in the activation of MAPKs and the induction of apoptosis in IEC-6 cells.展开更多
The Pacific subtropical cells(STCs)are shallow meridional overturning circulations connecting the tropics and subtropics,and are assumed to be an important driver of the tropical Pacific decadal variability.The variab...The Pacific subtropical cells(STCs)are shallow meridional overturning circulations connecting the tropics and subtropics,and are assumed to be an important driver of the tropical Pacific decadal variability.The variability of STCs under global warming is investigated using multimodal outputs from the latest phase of the Coupled Model Inter-comparison Project(CMIP6)and ocean reanalysis products.Firstly,the volume transport diagnostic analysis is employed to evaluate how coupled models and ocean reanalysis products reproduce interior STC transport.The variation of heat transport by the interior STC under the high-emissions warming scenarios is also analyzed.The results show that the multimodal-mean linear trends of the interior STC transport along 9°S and 9°N are-0.02 Sv/a and 0.04 Sv/a under global warming,respectively,which is mainly due to the combined effect of the strengthened upper oceanic stratification and the weakening of wind field.There is a compensation relationship between the interior STC and the western boundary transport in the future climate,and the compensation relationship of 9°S is more significant than that of 9°N.In addition,compared with ocean reanalysis products,the coupled models tend to underestimate the variability of the interior STC transport convergence,and thus may lose some sea surface temperature(SST)driving force,which may be the reason for the low STC-SST correlation simulated by the model.The future scenario simulation shows that the heat transport of interior STC is weakened under global warming,with a general agreement across models.展开更多
BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against...BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against conventional therapies.Gossypol acetic acid(GAA),which is extracted from the seeds of cotton plants,exerts anti-tumor roles in several types of cancer and has been reported to induce apoptosis of LSCs by inhibiting Bcl2.AIM To investigate the exact roles of GAA in regulating LSCs under different microenvironments and the exact mechanism.METHODS In this study,LSCs were magnetically sorted from AML cell lines and the CD34+CD38-population was obtained.The expression of leucine-rich pentatricopeptide repeat-containing protein(LRPPRC)and forkhead box M1(FOXM1)was evaluated in LSCs,and the effects of GAA on malignancies and mitochondrial RESULTS LRPPRC was found to be upregulated,and GAA inhibited cell proliferation by degrading LRPPRC.GAA induced LRPPRC degradation and inhibited the activation of interleukin 6(IL-6)/janus kinase(JAK)1/signal transducer and activator of transcription(STAT)3 signaling,enhancing chemosensitivity in LSCs against conventional chemotherapies,including L-Asparaginase,Dexamethasone,and cytarabine.GAA was also found to downregulate FOXM1 indirectly by regulating LRPPRC.Furthermore,GAA induced reactive oxygen species accumulation,disturbed mitochondrial homeostasis,and caused mitochondrial dysfunction.By inhibiting IL-6/JAK1/STAT3 signaling via degrading LRPPRC,GAA resulted in the elimination of LSCs.Meanwhile,GAA induced oxidative stress and subsequent cell damage by causing mitochondrial damage.CONCLUSION Taken together,the results indicate that GAA might overcome the BMM protective effect and be considered as a novel and effective combination therapy for AML.展开更多
Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery.Our previous in vitro study demonstrated that exosomes/small extracellular vesicles(sEVs)iso...Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery.Our previous in vitro study demonstrated that exosomes/small extracellular vesicles(sEVs)isolated from cerebral endothelial cells(CEC-sEVs)of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a(miR-27a)is an elevated miRNA in ischemic CEC-sEVs.In the present study,we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a(27a-sEVs)further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs.27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector.Small EVs isolated from CECs transfected with a scramble vector(Scra-sEVs)were used as a control.Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs.An array of behavior assays was used to measure neurological function.Compared with treatment of ischemic stroke with Scra-sEVs,treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side,and significantly improved neurological outcomes.In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth.Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone,while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a,and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone.Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs.Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes.Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling.展开更多
Intermittent fasting can benefit breast cancer patients undergoing chemotherapy or immunotherapy.However,it is still uncertain how to select immunotherapy drugs to combine with intermittent fasting.Herein we observed ...Intermittent fasting can benefit breast cancer patients undergoing chemotherapy or immunotherapy.However,it is still uncertain how to select immunotherapy drugs to combine with intermittent fasting.Herein we observed that two cycles of fasting treatment significantly inhibited breast tumor growth and lung tissue metastasis,as well as prolonged overall survival in mice bearing 4T1 and 4T07 breast cancer.During this process,both the immunosuppressive monocytic-(M-)and granulocytic-(G-)myeloid-derived suppressor cell(MDSC)decreased,accompanied by an increase in interleukin(IL)7R^(+)and granzyme B^(+)T cells in the tumor microenvironment.Interestingly,we observed that Ly6G^(low)G-MDSC sharply decreased after fasting treatment,and the cell surface markers and protein mass spectrometry data showed potential therapeutic targets.Mechanistic investigation revealed that glucose metabolism restriction suppressed the splenic granulocytemonocyte progenitor and the generation of colony-stimulating factors and IL-6,which both contributed to the accumulation of G-MDSC.On the other hand,glucose metabolism restriction can directly induce the apoptosis of Ly6G^(low)G-MDSC,but not Ly6G^(high)subsets.In summary,these results suggest that glucose metabolism restriction induced by fasting treatment attenuates the immune-suppressive milieu and enhances the activation of CD3^(+)T cells,providing potential solutions for enhancing immune-based cancer interventions.展开更多
Objective: To explore the role of miR-448 in regulating MAGEA6/AMPK signaling pathway in the biological study of hepatocellular carcinoma (HCC) tumor stem cells. Methods: Using the database, the hepatocellular carcino...Objective: To explore the role of miR-448 in regulating MAGEA6/AMPK signaling pathway in the biological study of hepatocellular carcinoma (HCC) tumor stem cells. Methods: Using the database, the hepatocellular carcinoma related expression chips were obtained and the regulatory mirnas of candidate genes were predicted, and the predicted results were analyzed. The effects of miR-448 and MAGEA6 on the pellet formation rate and clone formation rate of hepatocellular carcinoma stem cells were detected by immunofluorescence identification of stem cell markers and light microscope counting method. The effects of miR-448 and MAGEA6 on migration and invasion of hepatocellular carcinoma stem cells were detected by scratch and Transwell assay. Dual luciferase reporter assay to verify whether miR-448 targets MAGEA6. The expression and influence of miR-448 on MAGEA6 and AMPK pathway were detected by qRT-PCR and Western blot. Results: It was found that miR-448 may directly regulate the expression of MAGEA6. Overexpression of miR-448 inhibited the characteristics, proliferation, migration, and invasion of hepatocellular carcinoma stem cells in vitro, as well as the ability of xenograft tumor formation in vivo. However, inhibition of miR-448 showed opposite results. In addition, miR-448 directly targets MAGEA6 and regulates AMPK signaling. Silencing MAGEA6 and adding AMPK activator further verified that miR-448 activated AMPK signaling pathway by targeting MAGEA6, thus affecting characteristics, proliferation, migration and invasion of hepatoma stem cells. Conclusions: Our results reveal that miR-448 activates AMPK signaling pathway by targeting MAGEA6, thereby affecting characteristics, proliferation, migration and invasion of hepatoma stem cells. It is suggested that overexpression of miR-448 may be a new therapeutic strategy for hepatocellular carcinoma.展开更多
目的研究骆驼刺提取物(Alhagi pseudalhagi(M.B.)Desv.Extract,APE)对脂多糖诱导的大鼠小肠隐窝上皮细胞(Intestinal epithelial cell,IEC-6)损伤模型NLRP3炎症小体及相关细胞因子的影响。方法培养IEC-6细胞,将其分为空白组、模型组、AP...目的研究骆驼刺提取物(Alhagi pseudalhagi(M.B.)Desv.Extract,APE)对脂多糖诱导的大鼠小肠隐窝上皮细胞(Intestinal epithelial cell,IEC-6)损伤模型NLRP3炎症小体及相关细胞因子的影响。方法培养IEC-6细胞,将其分为空白组、模型组、APE低、中、高浓度组,用1.0μg/mL的脂多糖(Lipopolysaccharide,LPS)诱导建立细胞炎症损伤模型,APE(低、中、高浓度:15、25、35μg/mL)干预后采用CCK-8法检测细胞的存活率,通过ELISA试剂盒检测炎症因子IL-1β、IL-18、TNF-α的分泌水平。蛋白质印迹法(WB)检测核苷酸结合寡聚化结构域样受体蛋白3(Nucleotide-binding oligomerization domain-like receptor protein 3,NLRP3)炎症小体信号通路5个关键蛋白:NLRP3、半胱氨酸天冬氨酸蛋白酶1(Cystein-asparate protease-1,Caspase-l)、凋亡相关斑点样蛋白(Apoptosis-associated speck-like protein containing a CARD,ASC)及抗凋亡蛋白Bcl-2(Anti-apoptosis Protein Bcl-2)和Bcl-xl(Anti-apoptosis Protein Bcl-xl)表达。结果与空白组比较,模型组IEC-6细胞的存活率降低,NLRP3、Caspase-1、ASC蛋白表达水平升高,抗凋亡蛋白Bcl-2、Bcl-xl的表达水平降低,促炎因子IL-1β、IL-18和TNF-α的分泌水平升高,差异有统计学意义(P<0.05)。与模型组比较,APE低、中、高浓度组细胞存活率升高,35μg/mL APE组IEC-6细胞的NLRP3、Caspase-1、ASC蛋白相对表达水平降低,抗凋亡蛋白Bcl-2、Bcl-xl的表达水平升高,差异有统计学意义(P<0.05)。中、高浓度的APE能够抑制炎症因子分泌,25μg/mL APE对IL-1β、IL-18、TNF-α炎症因子分泌水平抑制率分别为31.60%、31.19%和31.09%(P<0.05)。结论骆驼刺提取物通过提高抗凋亡蛋白Bcl-2、Bcl-xl的表达水平,下调NLRP3炎症小体组成成分以及促炎因子IL-1β、IL-18和TNF-α分泌,从而抑制NLRP3炎症小体组装和激活,实现缓解LPS对IEC-6细胞的损伤。展开更多
Background: Exercise-Induced Bronchospasm (EIB) is an inflammatory condition characterized by severe airway constriction following the mobilization of inflammatory cells and interleukin-6 (IL-6). When severe, EIB can ...Background: Exercise-Induced Bronchospasm (EIB) is an inflammatory condition characterized by severe airway constriction following the mobilization of inflammatory cells and interleukin-6 (IL-6). When severe, EIB can require the use of pressurized salbutamol to treat athletes. This study investigated the nature of the systemic changes in inflammatory cells and post-exercise IL-6 concentrations after salbutamol treatment in EIB-susceptible distance runners. Materials and Methods: This was an experimental study that enrolled 12 long-distance runners. In Session A, the participants completed a treadmill exercise test, and those who had a maximum expiratory volume per second (FEV1) that was decreased by at least 10% compared to their base value were placed in the EIB-susceptible group (EIB+) (n = 6). Those whose FEV1 did not meet this criterion were placed in the nonresponsive (EIB?) group (n = 6). Before the Session B exercise, athletes in the BIE+ group inhaled two puffs of salbutamol (EIB+ Salb), while their EIB? counterparts received no treatment. Spirometry was performed before and after the exercise using a Spirobank G portable spirometer. Blood samples were taken before, immediately after and 2 hours after the stress test. Results: The mean post-exercise FEV1 values were not significantly different (p > 0.05) between the EIB+ Salb group and the EIB? group. The systemic changes in inflammatory cells and IL-6 concentrations in the EIB+ runners after salbutamol treatment were similar to those observed in their EIB? counterparts. Conclusion: Salbutamol pretreatment improved the systemic immune status of EIB-susceptible athletes.展开更多
Organic solar cells(OSCs)are a promising photovoltaic technology for practical applications.However,the design and synthesis of donor materials molecules based on traditional experimental trial-anderror methods are of...Organic solar cells(OSCs)are a promising photovoltaic technology for practical applications.However,the design and synthesis of donor materials molecules based on traditional experimental trial-anderror methods are often complex and expensive in terms of money and time.Machine learning(ML)can effectively learn from data sets and build reliable models to predict the performance of materials with reasonable accuracy.Y6 has become the landmark high-performance OSC acceptor material.We collected the power conversion efficiency(PCE)of small molecular donors and polymer donors based on the Y6 acceptor and calculated their molecule structure descriptors.Then we used six types of algorithms to develop models and compare the predictive performance with the coefficient of determination(R^(2))and Pearson correlation coefficient(r)as the metrics.Among them,decision tree-based algorithms showed excellent predictive capability,especially the Gradient Boosting Regression Tree(GBRT)models based on small molecular donors and polymer donors exhibited that the values of R2are 0.84 and 0.69 for the testing set,respectively.Our work provides a strategy to predict PCEs rapidly,and discovers the influence of the descriptors,thereby being expected to screen high-performance donor material molecules.展开更多
To characterize the role of plating densities and alpha difluoromethylornithine (DFMO) on the proliferation of IEC 6 cells in vitro Methods IEC 6 cells were seeded in 96 well microplates at various densitie...To characterize the role of plating densities and alpha difluoromethylornithine (DFMO) on the proliferation of IEC 6 cells in vitro Methods IEC 6 cells were seeded in 96 well microplates at various densities in the pre sence or absence of DFMO Cells were counted and their proliferative capabilit y was monitored Days 1 to 7 with MTT assay at an optical density of 570?nm Results There was a positive relationship between cell number and OD value ( r =0 954 , P 【0 01) Higher plating densities (】0 5×10 4 cells/well) inhibited the growth of cells on Day 2 When the density reaches 4×10 4 cells/well, the O D value increased gradually and reached a peak on Day 5 After that, the OD va lue began to fall The growth of IEC 6 cells was limited at a low density (0 2×10 4 cells/well) on Day 4 DFMO caused a complete inhibition of proliferati on of IEC 6 cells on Days 1 to 3 Conclusion Proliferation of IEC 6 cells is related to plating density and incubation time It is inhibited by DFMO, but is reversible when the incubation time is prolon ged展开更多
AIM: Eph receptors and ephrin ligands play a pivotal role in development and tissue maintenance. Since previous data have indicated an involvement of ephrin-B2 in epithelial healing, we investigated the gene expressi...AIM: Eph receptors and ephrin ligands play a pivotal role in development and tissue maintenance. Since previous data have indicated an involvement of ephrin-B2 in epithelial healing, we investigated the gene expression and downstream signaling pathways induced by ephrin-B mediated cell-cell signaling in intestinal epithelial cells. METHODS: Upon stimulation of ephrin-B pathways in IEC-6 cells with recombinant rat EphB1-Fc, gene expression was analyzed by Affymetrix rat genome 230 high density arrays at different time points. Differentially expressed genes were confirmed by real-time RT-PCR. In addition, MAP kinase pathways and focal adhesion kinase (FAK) activation downstream of ephrin-B were investigated by immunoblotting and fluorescence microscopy. RESULTS: Stimulation of the ephrin-B reverse signaling pathway in IEC-6 cells induces predominant expression of genes known to be involved into wound healing/cell migration, antiapoptotic pathways, host defense and inflammation. Cox-2, c-Fos, Egr-1, Egr-2, and MCP-1 were found among the most significantly regulated genes. Furthermore, we show that the expression of repair- related genes is also accompanied by activation of the ERKI/2 MAP kinase pathway and FAK, two key regulators of epithelial restitution. CONCLUSION: Stimulation of the ephrin-B reverse signaling pathway induces a phenotype characterized by upregulation of repair-related genes, which may partially be mediated by ERK1/2 pathways.展开更多
[Objective] This study was conducted to investigate the effects of Echi-nacea purpurea polysaccharides (EPS) on proliferation of rat intestinal epithelial cel IEC-6. [Method] The proliferation rate of IEC-6 cel s cu...[Objective] This study was conducted to investigate the effects of Echi-nacea purpurea polysaccharides (EPS) on proliferation of rat intestinal epithelial cel IEC-6. [Method] The proliferation rate of IEC-6 cel s cultured in EPS at different concentrations and for different time was measured by MTT assay and analyzed by statistic methods. [Result] The proliferation rate of IEC-6 cel s cultured in EPS at al the concentrations and for different time was improved by different extents in com-parison with the control. In detail, 50 and 200 μg/ml EPS greatly improved the IEC-6 cel proliferation after 24 h of culture; then, the cel proliferation rate in the two treatments increased from 24 to 48 h, and declined from 48 to 72 h. The cel pro-liferation was also significantly improved by culturing in 100 μg/ml EPS for 72 h and in 500 μg/ml EPS for 48 h. After 48 h of culture, the proliferation rate of IEC-6 cel increased in a EPS dose-dependent manner. [Conclusion] EPS can promote IEC-6 cel proliferation, and thus improve the intestinal mucosal absorption and immune function of rat.展开更多
基金Supported by National Natural Science Foundation of China(31472230)Natural Science Foundation of Hebei Province(C2014407068)Project of Hebei Department of Science and Technology(14966610D)
文摘[ Objective ] The paper was to explore effects of Echinacea polysaccharide (EPS) on expression of NF-KB protein secreted by LPS-injured IEC-6 cells, and to provide a theoretical basis for clinical application of Echinacea purpurea against bacterial diseases and enhancement of immunity. [ Method] Nucleoprotein extracted from IEC-6 cells in normal control group, LPS group, different concentrations of EPS (50, 100,200,500 μg/mL) + LPS groups were detected by SDS- PAGE electrophoresis, and the content of NF-κB protein was analyzed using western blotting method. [ Result ] The content of NF-KB protein in normal control group was the lowest, while that in LPS group was the highest. The content of NF-κB protein in EPS group gradually decreased with the increasing concentration of EPS. [ Result] The expression of NF-κB protein increased when IEC-6 cells were stimulated by LPS, and EPS could effectively inhibit increased expression of NF- κB protein. With the increasing concentration of EPS, the inhibition effect against increased expression of NF-κB protein gradually strengthened.
基金in part by Natural Sciences Foundation of China (No. 39870239)by the Sasagawa Fellowship,Japan.
文摘Objective: To explore the effects of γ-irradiation on mitogen-activated protein kinases (MAPKs) and role of intracellular calcium in this event in intestinal epithelial cell line 6 (IEC-6 cells). Methods: After cultured rat IIEC-6 cells with or without the pretreatment of intracellular Ca2+ chelator were exposed to Y-ir-radiation of 6 Gy, the total and phosphorylated MAPKs in the cells were determined with Western blotting and apoptosis was examined with flow cytometry. Activities of Extracellular signal-regulated protein kinase (ERK) and p38 MAPK were determined by using immuoprecipitation followed by Western blotting. Results: In response to γ-irradiation, phosphorylation of ERK was not significantly observed, while the levels of phosphorylated c-Jun NH2-terminal kinase (JNK) and p38 MAPK were increased in 30 min and reached the peak 2 h after exposure to 6 Gy γ-irradiation, though the cell viability was significantly lowered 12 h. On the other hand, no obvious changes were seen in the total protein levels of ERK, JNK and p38 MAPK. Chelation of intracellular Ca2+ almost completely suppressed the JNK and p38 MAPK phosphorylation induced by γ-irradia-tion, but removal of external Ca2+ had no such effect. Activation of p38 MAPK, but not of ERK, was seen to have a correlation with γ-irradiation induced apoptosis. Conclusion: The results suggest that γ-irradiation is a potent activator for JNK and p38 MAPK, and Ca2+ mobilized from intracellular stores plays an important role in the activation of MAPKs and the induction of apoptosis in IEC-6 cells.
基金the National Natural Science Foundation of China(NSFC)(No.41976027)。
文摘The Pacific subtropical cells(STCs)are shallow meridional overturning circulations connecting the tropics and subtropics,and are assumed to be an important driver of the tropical Pacific decadal variability.The variability of STCs under global warming is investigated using multimodal outputs from the latest phase of the Coupled Model Inter-comparison Project(CMIP6)and ocean reanalysis products.Firstly,the volume transport diagnostic analysis is employed to evaluate how coupled models and ocean reanalysis products reproduce interior STC transport.The variation of heat transport by the interior STC under the high-emissions warming scenarios is also analyzed.The results show that the multimodal-mean linear trends of the interior STC transport along 9°S and 9°N are-0.02 Sv/a and 0.04 Sv/a under global warming,respectively,which is mainly due to the combined effect of the strengthened upper oceanic stratification and the weakening of wind field.There is a compensation relationship between the interior STC and the western boundary transport in the future climate,and the compensation relationship of 9°S is more significant than that of 9°N.In addition,compared with ocean reanalysis products,the coupled models tend to underestimate the variability of the interior STC transport convergence,and thus may lose some sea surface temperature(SST)driving force,which may be the reason for the low STC-SST correlation simulated by the model.The future scenario simulation shows that the heat transport of interior STC is weakened under global warming,with a general agreement across models.
文摘BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against conventional therapies.Gossypol acetic acid(GAA),which is extracted from the seeds of cotton plants,exerts anti-tumor roles in several types of cancer and has been reported to induce apoptosis of LSCs by inhibiting Bcl2.AIM To investigate the exact roles of GAA in regulating LSCs under different microenvironments and the exact mechanism.METHODS In this study,LSCs were magnetically sorted from AML cell lines and the CD34+CD38-population was obtained.The expression of leucine-rich pentatricopeptide repeat-containing protein(LRPPRC)and forkhead box M1(FOXM1)was evaluated in LSCs,and the effects of GAA on malignancies and mitochondrial RESULTS LRPPRC was found to be upregulated,and GAA inhibited cell proliferation by degrading LRPPRC.GAA induced LRPPRC degradation and inhibited the activation of interleukin 6(IL-6)/janus kinase(JAK)1/signal transducer and activator of transcription(STAT)3 signaling,enhancing chemosensitivity in LSCs against conventional chemotherapies,including L-Asparaginase,Dexamethasone,and cytarabine.GAA was also found to downregulate FOXM1 indirectly by regulating LRPPRC.Furthermore,GAA induced reactive oxygen species accumulation,disturbed mitochondrial homeostasis,and caused mitochondrial dysfunction.By inhibiting IL-6/JAK1/STAT3 signaling via degrading LRPPRC,GAA resulted in the elimination of LSCs.Meanwhile,GAA induced oxidative stress and subsequent cell damage by causing mitochondrial damage.CONCLUSION Taken together,the results indicate that GAA might overcome the BMM protective effect and be considered as a novel and effective combination therapy for AML.
基金supported by the NIH grants,R01 NS111801(to ZGZ)American Heart Association 16SDG29860003(to YZ)。
文摘Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery.Our previous in vitro study demonstrated that exosomes/small extracellular vesicles(sEVs)isolated from cerebral endothelial cells(CEC-sEVs)of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a(miR-27a)is an elevated miRNA in ischemic CEC-sEVs.In the present study,we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a(27a-sEVs)further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs.27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector.Small EVs isolated from CECs transfected with a scramble vector(Scra-sEVs)were used as a control.Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs.An array of behavior assays was used to measure neurological function.Compared with treatment of ischemic stroke with Scra-sEVs,treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side,and significantly improved neurological outcomes.In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth.Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone,while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a,and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone.Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs.Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes.Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling.
基金supported by the Postdoctoral Research Funds of Hebei Medical University(30705010016-3759)Natural Science Foundation of China(32272328)+4 种基金Natural Science Foundation of Hebei Province(B2022321001)National Key Research Project of Hebei Province(20375502D)Postdoctoral Research Project of Hebei Province(B2022003031)Science and Technology Research Program of Hebei Provincial Colleges(QN2023229)Hebei Provincial Key Laboratory of Nutrition and Health(2023YDYY-KF05)。
文摘Intermittent fasting can benefit breast cancer patients undergoing chemotherapy or immunotherapy.However,it is still uncertain how to select immunotherapy drugs to combine with intermittent fasting.Herein we observed that two cycles of fasting treatment significantly inhibited breast tumor growth and lung tissue metastasis,as well as prolonged overall survival in mice bearing 4T1 and 4T07 breast cancer.During this process,both the immunosuppressive monocytic-(M-)and granulocytic-(G-)myeloid-derived suppressor cell(MDSC)decreased,accompanied by an increase in interleukin(IL)7R^(+)and granzyme B^(+)T cells in the tumor microenvironment.Interestingly,we observed that Ly6G^(low)G-MDSC sharply decreased after fasting treatment,and the cell surface markers and protein mass spectrometry data showed potential therapeutic targets.Mechanistic investigation revealed that glucose metabolism restriction suppressed the splenic granulocytemonocyte progenitor and the generation of colony-stimulating factors and IL-6,which both contributed to the accumulation of G-MDSC.On the other hand,glucose metabolism restriction can directly induce the apoptosis of Ly6G^(low)G-MDSC,but not Ly6G^(high)subsets.In summary,these results suggest that glucose metabolism restriction induced by fasting treatment attenuates the immune-suppressive milieu and enhances the activation of CD3^(+)T cells,providing potential solutions for enhancing immune-based cancer interventions.
文摘Objective: To explore the role of miR-448 in regulating MAGEA6/AMPK signaling pathway in the biological study of hepatocellular carcinoma (HCC) tumor stem cells. Methods: Using the database, the hepatocellular carcinoma related expression chips were obtained and the regulatory mirnas of candidate genes were predicted, and the predicted results were analyzed. The effects of miR-448 and MAGEA6 on the pellet formation rate and clone formation rate of hepatocellular carcinoma stem cells were detected by immunofluorescence identification of stem cell markers and light microscope counting method. The effects of miR-448 and MAGEA6 on migration and invasion of hepatocellular carcinoma stem cells were detected by scratch and Transwell assay. Dual luciferase reporter assay to verify whether miR-448 targets MAGEA6. The expression and influence of miR-448 on MAGEA6 and AMPK pathway were detected by qRT-PCR and Western blot. Results: It was found that miR-448 may directly regulate the expression of MAGEA6. Overexpression of miR-448 inhibited the characteristics, proliferation, migration, and invasion of hepatocellular carcinoma stem cells in vitro, as well as the ability of xenograft tumor formation in vivo. However, inhibition of miR-448 showed opposite results. In addition, miR-448 directly targets MAGEA6 and regulates AMPK signaling. Silencing MAGEA6 and adding AMPK activator further verified that miR-448 activated AMPK signaling pathway by targeting MAGEA6, thus affecting characteristics, proliferation, migration and invasion of hepatoma stem cells. Conclusions: Our results reveal that miR-448 activates AMPK signaling pathway by targeting MAGEA6, thereby affecting characteristics, proliferation, migration and invasion of hepatoma stem cells. It is suggested that overexpression of miR-448 may be a new therapeutic strategy for hepatocellular carcinoma.
文摘目的研究骆驼刺提取物(Alhagi pseudalhagi(M.B.)Desv.Extract,APE)对脂多糖诱导的大鼠小肠隐窝上皮细胞(Intestinal epithelial cell,IEC-6)损伤模型NLRP3炎症小体及相关细胞因子的影响。方法培养IEC-6细胞,将其分为空白组、模型组、APE低、中、高浓度组,用1.0μg/mL的脂多糖(Lipopolysaccharide,LPS)诱导建立细胞炎症损伤模型,APE(低、中、高浓度:15、25、35μg/mL)干预后采用CCK-8法检测细胞的存活率,通过ELISA试剂盒检测炎症因子IL-1β、IL-18、TNF-α的分泌水平。蛋白质印迹法(WB)检测核苷酸结合寡聚化结构域样受体蛋白3(Nucleotide-binding oligomerization domain-like receptor protein 3,NLRP3)炎症小体信号通路5个关键蛋白:NLRP3、半胱氨酸天冬氨酸蛋白酶1(Cystein-asparate protease-1,Caspase-l)、凋亡相关斑点样蛋白(Apoptosis-associated speck-like protein containing a CARD,ASC)及抗凋亡蛋白Bcl-2(Anti-apoptosis Protein Bcl-2)和Bcl-xl(Anti-apoptosis Protein Bcl-xl)表达。结果与空白组比较,模型组IEC-6细胞的存活率降低,NLRP3、Caspase-1、ASC蛋白表达水平升高,抗凋亡蛋白Bcl-2、Bcl-xl的表达水平降低,促炎因子IL-1β、IL-18和TNF-α的分泌水平升高,差异有统计学意义(P<0.05)。与模型组比较,APE低、中、高浓度组细胞存活率升高,35μg/mL APE组IEC-6细胞的NLRP3、Caspase-1、ASC蛋白相对表达水平降低,抗凋亡蛋白Bcl-2、Bcl-xl的表达水平升高,差异有统计学意义(P<0.05)。中、高浓度的APE能够抑制炎症因子分泌,25μg/mL APE对IL-1β、IL-18、TNF-α炎症因子分泌水平抑制率分别为31.60%、31.19%和31.09%(P<0.05)。结论骆驼刺提取物通过提高抗凋亡蛋白Bcl-2、Bcl-xl的表达水平,下调NLRP3炎症小体组成成分以及促炎因子IL-1β、IL-18和TNF-α分泌,从而抑制NLRP3炎症小体组装和激活,实现缓解LPS对IEC-6细胞的损伤。
文摘Background: Exercise-Induced Bronchospasm (EIB) is an inflammatory condition characterized by severe airway constriction following the mobilization of inflammatory cells and interleukin-6 (IL-6). When severe, EIB can require the use of pressurized salbutamol to treat athletes. This study investigated the nature of the systemic changes in inflammatory cells and post-exercise IL-6 concentrations after salbutamol treatment in EIB-susceptible distance runners. Materials and Methods: This was an experimental study that enrolled 12 long-distance runners. In Session A, the participants completed a treadmill exercise test, and those who had a maximum expiratory volume per second (FEV1) that was decreased by at least 10% compared to their base value were placed in the EIB-susceptible group (EIB+) (n = 6). Those whose FEV1 did not meet this criterion were placed in the nonresponsive (EIB?) group (n = 6). Before the Session B exercise, athletes in the BIE+ group inhaled two puffs of salbutamol (EIB+ Salb), while their EIB? counterparts received no treatment. Spirometry was performed before and after the exercise using a Spirobank G portable spirometer. Blood samples were taken before, immediately after and 2 hours after the stress test. Results: The mean post-exercise FEV1 values were not significantly different (p > 0.05) between the EIB+ Salb group and the EIB? group. The systemic changes in inflammatory cells and IL-6 concentrations in the EIB+ runners after salbutamol treatment were similar to those observed in their EIB? counterparts. Conclusion: Salbutamol pretreatment improved the systemic immune status of EIB-susceptible athletes.
基金financially supported by the National Natural Science Foundation of China(21776067)the Hunan Provincial Distinguished Young Scholars Foundation of China(2020JJ2014)+1 种基金the Hunan Provincial Natural Science Foundation of China(2022JJ30239)the Key Project of Hunan Provincial Education Department,China,No.22A0328。
文摘Organic solar cells(OSCs)are a promising photovoltaic technology for practical applications.However,the design and synthesis of donor materials molecules based on traditional experimental trial-anderror methods are often complex and expensive in terms of money and time.Machine learning(ML)can effectively learn from data sets and build reliable models to predict the performance of materials with reasonable accuracy.Y6 has become the landmark high-performance OSC acceptor material.We collected the power conversion efficiency(PCE)of small molecular donors and polymer donors based on the Y6 acceptor and calculated their molecule structure descriptors.Then we used six types of algorithms to develop models and compare the predictive performance with the coefficient of determination(R^(2))and Pearson correlation coefficient(r)as the metrics.Among them,decision tree-based algorithms showed excellent predictive capability,especially the Gradient Boosting Regression Tree(GBRT)models based on small molecular donors and polymer donors exhibited that the values of R2are 0.84 and 0.69 for the testing set,respectively.Our work provides a strategy to predict PCEs rapidly,and discovers the influence of the descriptors,thereby being expected to screen high-performance donor material molecules.
基金theNationalEmphasisDevelopingProgramofBasicResearch (973 ) (No G19990 5 44 )theNationalNaturalscienceFoundationofChina (No 3 9970 90 6)
文摘To characterize the role of plating densities and alpha difluoromethylornithine (DFMO) on the proliferation of IEC 6 cells in vitro Methods IEC 6 cells were seeded in 96 well microplates at various densities in the pre sence or absence of DFMO Cells were counted and their proliferative capabilit y was monitored Days 1 to 7 with MTT assay at an optical density of 570?nm Results There was a positive relationship between cell number and OD value ( r =0 954 , P 【0 01) Higher plating densities (】0 5×10 4 cells/well) inhibited the growth of cells on Day 2 When the density reaches 4×10 4 cells/well, the O D value increased gradually and reached a peak on Day 5 After that, the OD va lue began to fall The growth of IEC 6 cells was limited at a low density (0 2×10 4 cells/well) on Day 4 DFMO caused a complete inhibition of proliferati on of IEC 6 cells on Days 1 to 3 Conclusion Proliferation of IEC 6 cells is related to plating density and incubation time It is inhibited by DFMO, but is reversible when the incubation time is prolon ged
基金Supported by the German Research Society (DFG - SFB 585/A8) and the Dr. Heinz Maurer Grant KFB 1.7
文摘AIM: Eph receptors and ephrin ligands play a pivotal role in development and tissue maintenance. Since previous data have indicated an involvement of ephrin-B2 in epithelial healing, we investigated the gene expression and downstream signaling pathways induced by ephrin-B mediated cell-cell signaling in intestinal epithelial cells. METHODS: Upon stimulation of ephrin-B pathways in IEC-6 cells with recombinant rat EphB1-Fc, gene expression was analyzed by Affymetrix rat genome 230 high density arrays at different time points. Differentially expressed genes were confirmed by real-time RT-PCR. In addition, MAP kinase pathways and focal adhesion kinase (FAK) activation downstream of ephrin-B were investigated by immunoblotting and fluorescence microscopy. RESULTS: Stimulation of the ephrin-B reverse signaling pathway in IEC-6 cells induces predominant expression of genes known to be involved into wound healing/cell migration, antiapoptotic pathways, host defense and inflammation. Cox-2, c-Fos, Egr-1, Egr-2, and MCP-1 were found among the most significantly regulated genes. Furthermore, we show that the expression of repair- related genes is also accompanied by activation of the ERKI/2 MAP kinase pathway and FAK, two key regulators of epithelial restitution. CONCLUSION: Stimulation of the ephrin-B reverse signaling pathway induces a phenotype characterized by upregulation of repair-related genes, which may partially be mediated by ERK1/2 pathways.
基金Supported by National Natural Science Foundation of China(31472230)Natural Science Foundation of Hebei Province(C2014407068)+1 种基金Fund of Department of Science and Technology of Hebei Province(14966610D,12220408D)Fund from Hebei Provincial Department of Education for Hundreds of Outstanding Innovative Talents(II)(ZH2011244,Q2012037)~~
文摘[Objective] This study was conducted to investigate the effects of Echi-nacea purpurea polysaccharides (EPS) on proliferation of rat intestinal epithelial cel IEC-6. [Method] The proliferation rate of IEC-6 cel s cultured in EPS at different concentrations and for different time was measured by MTT assay and analyzed by statistic methods. [Result] The proliferation rate of IEC-6 cel s cultured in EPS at al the concentrations and for different time was improved by different extents in com-parison with the control. In detail, 50 and 200 μg/ml EPS greatly improved the IEC-6 cel proliferation after 24 h of culture; then, the cel proliferation rate in the two treatments increased from 24 to 48 h, and declined from 48 to 72 h. The cel pro-liferation was also significantly improved by culturing in 100 μg/ml EPS for 72 h and in 500 μg/ml EPS for 48 h. After 48 h of culture, the proliferation rate of IEC-6 cel increased in a EPS dose-dependent manner. [Conclusion] EPS can promote IEC-6 cel proliferation, and thus improve the intestinal mucosal absorption and immune function of rat.