With its rapid development in the wireless markets, IEEE 802.11 WLAN is experiencing a huge popularity. However, due to the limitation of frequency bandwidth of WLANs, it is essential that the available radio resource...With its rapid development in the wireless markets, IEEE 802.11 WLAN is experiencing a huge popularity. However, due to the limitation of frequency bandwidth of WLANs, it is essential that the available radio resource should be fully utilized to offer different services to multiple users. In order to maximize system throughput while still guaranteeing the fairness among users, a proportional fairness based algorithm is proposed in this work. Since most of the previous resource allocation algorithms were simply based on the channel conditions without taking into account user's demand, in this paper, we introduce the theory of fuzzy synthetic evaluation(FSE) which also allows us to consider user's demand as an important factor. As such, the fairness among users can be improved based on different users' requirements for services. In addition, a channel state information based rate adaptation scheme is also proposed. Through simulation studies, the results clearly validate that our proposed scheme shows advantages on providing user fairness while still improving the system throughput.展开更多
Applying IEEE802.11MAC protocols in baltery-powered devices make power consumption critical demand upon implementation.A statistical study on operator/bit usage,the weight of operator and operator type in the programs...Applying IEEE802.11MAC protocols in baltery-powered devices make power consumption critical demand upon implementation.A statistical study on operator/bit usage,the weight of operator and operator type in the programs has been done,including converting the MAC functions from SDL to C to ASM with tow RISC targts. The study shows that implementing MAC. functions should consider real-time protocol re3quirements by dividing MAC functions into sets. We enhance the set of time-critical functions implemented to dedicated hardwere and the set of non-time-critical functions implemented to software run with embedded processor. This heterogeneous system is proposed in consideration of our study results to reduce popwer consumption.展开更多
A load-balancing scheme for IEEE 802.11 WLANs based on cooperative game theory is presented.A coalition among the access points(APs) with overlapping coverage is formed to share the network load through a game.First...A load-balancing scheme for IEEE 802.11 WLANs based on cooperative game theory is presented.A coalition among the access points(APs) with overlapping coverage is formed to share the network load through a game.Firstly, the candidate APs submit their load-competing strategies(i.e., the amount of user traffic they can admit in an AC/game period) to the control AP.Secondly, the control AP solves the game by the method of shapley value, which is the maximum traffic allocated to each AP in an AC/game period.Finally, the game is repeated periodically to distribute the traffic load among the APs.Simulation results show that the proposed game can balance the network load effectively compared with the IEEE 802.11 standard balancing solution.展开更多
A comprehensive study was presented for WLAN 802.11b using error-prone channel. It was theoretically and numerically evaluated the performance of three different network sizes with the bit rates that available in 802....A comprehensive study was presented for WLAN 802.11b using error-prone channel. It was theoretically and numerically evaluated the performance of three different network sizes with the bit rates that available in 802.11b protocol. Results show that throughput does not change with the size of the network for wide range of bit error rates (BERs) and the channel bit rates play a significant role in the main characteristics of the network. A comprehensive explanation has given for the phenomenon of the packet delay suppression at relatively high level of BERs in view of the size of the networks and the BERs. The effect length of the transmitting packets is also investigated.展开更多
In the IEEE g02. 11 protocol, the adoption of the exponential backoff technique leads to throughput performance strongly dependent on the initial contention window size and, most importantly, on the number of contendi...In the IEEE g02. 11 protocol, the adoption of the exponential backoff technique leads to throughput performance strongly dependent on the initial contention window size and, most importantly, on the number of contending stations considered in the network. This paper proposes a simple but accurate method to dynamically estimate the number of contending stations in a wireless local area network ( WLAN ). Based on estimation, all the mobile stations dynamically adjust the initial contention window in medium access control ( MAC ) layer to avoid collisions. The simulation results show that the proposed algorithm can achieve efficient channel utilization, higher system throughput, and better fairness performance.展开更多
IEEE 802.11 WLAN cannot guarantee the QoS of applications, thus admission control has been proposed as an essen-tial solution to enhance the QoS. Packet delay and throughput are commonly employed as assessment criteri...IEEE 802.11 WLAN cannot guarantee the QoS of applications, thus admission control has been proposed as an essen-tial solution to enhance the QoS. Packet delay and throughput are commonly employed as assessment criterions to determine whether a new connection can be admitted into the WLAN. Considering the real network condition, the analytical model is presented in this paper, which is aimed to evaluate the packet delay and throughput performance of IEEE 802.11 WLAN in nonsaturated conditions, taking into account diverse transmission rates and diverse traffic flows (i.e. flows with different packet sizes and arrival rates) simultaneously. This model is based on Markov chain and the theoretical predictions are verified by simulation in OPNET 14.5. We also analyze the influences of transmission rate diversity and traffic flow diversity on throughput performance. It is observed that, the presence of even one station with lower transmission rate can cause a considerable degradation in throughput performance of all the stations when they have the same packet size and arrival rate. Higher system throughput can be achieved if lower transmission rate stations transmit packets with smaller size or arrival rate.展开更多
基金partially supported by the Academy of Finland (Decision No. 284748, 288473)
文摘With its rapid development in the wireless markets, IEEE 802.11 WLAN is experiencing a huge popularity. However, due to the limitation of frequency bandwidth of WLANs, it is essential that the available radio resource should be fully utilized to offer different services to multiple users. In order to maximize system throughput while still guaranteeing the fairness among users, a proportional fairness based algorithm is proposed in this work. Since most of the previous resource allocation algorithms were simply based on the channel conditions without taking into account user's demand, in this paper, we introduce the theory of fuzzy synthetic evaluation(FSE) which also allows us to consider user's demand as an important factor. As such, the fairness among users can be improved based on different users' requirements for services. In addition, a channel state information based rate adaptation scheme is also proposed. Through simulation studies, the results clearly validate that our proposed scheme shows advantages on providing user fairness while still improving the system throughput.
文摘Applying IEEE802.11MAC protocols in baltery-powered devices make power consumption critical demand upon implementation.A statistical study on operator/bit usage,the weight of operator and operator type in the programs has been done,including converting the MAC functions from SDL to C to ASM with tow RISC targts. The study shows that implementing MAC. functions should consider real-time protocol re3quirements by dividing MAC functions into sets. We enhance the set of time-critical functions implemented to dedicated hardwere and the set of non-time-critical functions implemented to software run with embedded processor. This heterogeneous system is proposed in consideration of our study results to reduce popwer consumption.
基金supported by the Aviation Science Fund (20080196005)
文摘A load-balancing scheme for IEEE 802.11 WLANs based on cooperative game theory is presented.A coalition among the access points(APs) with overlapping coverage is formed to share the network load through a game.Firstly, the candidate APs submit their load-competing strategies(i.e., the amount of user traffic they can admit in an AC/game period) to the control AP.Secondly, the control AP solves the game by the method of shapley value, which is the maximum traffic allocated to each AP in an AC/game period.Finally, the game is repeated periodically to distribute the traffic load among the APs.Simulation results show that the proposed game can balance the network load effectively compared with the IEEE 802.11 standard balancing solution.
文摘A comprehensive study was presented for WLAN 802.11b using error-prone channel. It was theoretically and numerically evaluated the performance of three different network sizes with the bit rates that available in 802.11b protocol. Results show that throughput does not change with the size of the network for wide range of bit error rates (BERs) and the channel bit rates play a significant role in the main characteristics of the network. A comprehensive explanation has given for the phenomenon of the packet delay suppression at relatively high level of BERs in view of the size of the networks and the BERs. The effect length of the transmitting packets is also investigated.
基金Supported by National Natural Science Foundation of China ( No. 60472078) , and Cisco University Research Program Fund at Community Foundation Silicon Valley( No. 20029303 ).
文摘In the IEEE g02. 11 protocol, the adoption of the exponential backoff technique leads to throughput performance strongly dependent on the initial contention window size and, most importantly, on the number of contending stations considered in the network. This paper proposes a simple but accurate method to dynamically estimate the number of contending stations in a wireless local area network ( WLAN ). Based on estimation, all the mobile stations dynamically adjust the initial contention window in medium access control ( MAC ) layer to avoid collisions. The simulation results show that the proposed algorithm can achieve efficient channel utilization, higher system throughput, and better fairness performance.
文摘IEEE 802.11 WLAN cannot guarantee the QoS of applications, thus admission control has been proposed as an essen-tial solution to enhance the QoS. Packet delay and throughput are commonly employed as assessment criterions to determine whether a new connection can be admitted into the WLAN. Considering the real network condition, the analytical model is presented in this paper, which is aimed to evaluate the packet delay and throughput performance of IEEE 802.11 WLAN in nonsaturated conditions, taking into account diverse transmission rates and diverse traffic flows (i.e. flows with different packet sizes and arrival rates) simultaneously. This model is based on Markov chain and the theoretical predictions are verified by simulation in OPNET 14.5. We also analyze the influences of transmission rate diversity and traffic flow diversity on throughput performance. It is observed that, the presence of even one station with lower transmission rate can cause a considerable degradation in throughput performance of all the stations when they have the same packet size and arrival rate. Higher system throughput can be achieved if lower transmission rate stations transmit packets with smaller size or arrival rate.