为解决巡检机器人对换流站狭窄区域场景以及多楼层场景建图定位困难的问题,采用四足机器人作为巡检平台,对四足机器人建图定位系统进行优化。首先融合深度相机与激光雷达点云,对融合点云进行地面分割,提取边缘特征、非地面面特征以及地...为解决巡检机器人对换流站狭窄区域场景以及多楼层场景建图定位困难的问题,采用四足机器人作为巡检平台,对四足机器人建图定位系统进行优化。首先融合深度相机与激光雷达点云,对融合点云进行地面分割,提取边缘特征、非地面面特征以及地面面特征,优化基于特征的点云匹配算法,使用紧耦合的迭代卡尔曼滤波器(iterated extended Kalman filter, IEKF)来融合点云特征点和惯性测量单元(inertial measurement unit, IMU),通过ORB(oriented FAST and rotated BRIEF)描述符计算关键帧图像的BoW(Bag-of-Words)向量用于回环检测消除建图累积误差。其次,通过无迹卡尔曼滤波(unscented Kalman filter, UKF)融合足式里程计作为四足机器人正态分布变换(normal distribution transform, NDT)姿态匹配初值,加快NDT匹配时间,通过实时匹配融合点云与三维地图得到全局位姿进行姿态更新。实验结果表明,所提出的建图方法可以实现狭窄通道以及多楼层场景的有效建图,所提出的定位方法可以实现两种场景下帧图匹配时间至42 ms以及重复定位精度6 cm以内的实时有效定位。展开更多
文摘为解决巡检机器人对换流站狭窄区域场景以及多楼层场景建图定位困难的问题,采用四足机器人作为巡检平台,对四足机器人建图定位系统进行优化。首先融合深度相机与激光雷达点云,对融合点云进行地面分割,提取边缘特征、非地面面特征以及地面面特征,优化基于特征的点云匹配算法,使用紧耦合的迭代卡尔曼滤波器(iterated extended Kalman filter, IEKF)来融合点云特征点和惯性测量单元(inertial measurement unit, IMU),通过ORB(oriented FAST and rotated BRIEF)描述符计算关键帧图像的BoW(Bag-of-Words)向量用于回环检测消除建图累积误差。其次,通过无迹卡尔曼滤波(unscented Kalman filter, UKF)融合足式里程计作为四足机器人正态分布变换(normal distribution transform, NDT)姿态匹配初值,加快NDT匹配时间,通过实时匹配融合点云与三维地图得到全局位姿进行姿态更新。实验结果表明,所提出的建图方法可以实现狭窄通道以及多楼层场景的有效建图,所提出的定位方法可以实现两种场景下帧图匹配时间至42 ms以及重复定位精度6 cm以内的实时有效定位。