目的探究血清晚期糖基化终产物受体(RAGE)、高迁移率族蛋白B1(high mobility group protein B1,HMGB1)水平与重症肺炎(SP)急性呼吸窘迫综合征(ARDS)发病及γ-干扰素(IFN-γ)/白细胞介素4(IL-4)变化的关系。方法前瞻性选取2020年3月至202...目的探究血清晚期糖基化终产物受体(RAGE)、高迁移率族蛋白B1(high mobility group protein B1,HMGB1)水平与重症肺炎(SP)急性呼吸窘迫综合征(ARDS)发病及γ-干扰素(IFN-γ)/白细胞介素4(IL-4)变化的关系。方法前瞻性选取2020年3月至2022年2月我院收治的100例SP患儿为研究对象,根据患儿是否发生继发性ARDS将患儿分为ARDS组(n=56)和对照组(n=44),收集患儿一般资料,采集外周血以酶联免疫吸附法进行RAGE、HMGB1、IFN-γ和IL-4表达水平检测,采用多因素logistic回归分析SP患儿继发ARDS的影响因素,采用Pearson相关性分析其与IFN-γ/IL-4的相关性,并采用受试者工作曲线(ROC)分析RAGE、HMGB1表达对SP患儿继发ARDS的预测价值。结果两组SP患儿性别、年龄、体温以及发病季节之间无显著差异,ARDS组致病菌种类多于对照组,PaO_(2)/FiO_(2)和APS评分、血清RAGE、HMGB1、IFN-γ和IL-4表达水平以及IFN-γ/IL-4比值均高于对照组(P<0.05)。经多因素logistic回归分析可知,致病菌种类、PaO_(2)/FiO_(2)、RAGE、HMGB1表达、IFN-γ、IL-4和IFN-γ/IL-4均为SP患儿继发ARDS的影响因素。经Pearson相关检验,SP患儿血清RAGE、HMGB1表达水平与IFN-γ、IL-4和IFN-γ/IL-4均呈正相关(P<0.05)。经ROC曲线分析可得,血清RAGE、HMGB1水平预测SP患儿发生ARDS的AUC分别为0.707和0.750,灵敏度分别为73.2%、64.3%,特异度分别为68.2%、77.3%,两者联合预测的AUC为0.848,灵敏度和特异度分别为80.4%和81.8%。结论SP继发ARDS患儿血清中RAGE、HMGB1表达水平较高,与IFN-γ/IL-4呈正相关,监测患儿血清RAGE、HMGB1表达对SP患儿继发ARDS的风险有一定的预测价值。展开更多
Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic st...Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.展开更多
The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an ...The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an excellent test for stateof-the-art nuclear models.The atomic nucleus is a self-organized quantum manybody system comprising specific numbers of protons Z and neutrons N.展开更多
Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT...Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing.However,recent growth has occurred in this field due to advances in diagnostic technologies,device miniaturization,and progress in wearable electronics.Among these developments,electrochemical sensors have attracted interest in the POCT field due to their high sensitivity,compact size,and affordability.They are used in various applications,from disease diagnosis to health status monitoring.In this paper we explore recent advancements in electrochemical sensors,the methods of fabricating them,and the various types of sensing mechanisms that can be used.Furthermore,we delve into methods for immobilizing specific biorecognition elements,including enzymes,antibodies,and aptamers,onto electrode surfaces and how these sensors are used in real-world POCT settings.展开更多
As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal...As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.展开更多
In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses...In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses and strong disturbances and construction conditions such as the application of high prestress.It is essential to study the support components performance under dynamic-static coupling conditions.Based on this,a multi-functional anchorage support dynamic-static coupling performance test system(MAC system)is developed,which can achieve 7 types of testing functions,including single component performance,anchored net performance,anchored rock performance and so on.The bolt and cable mechanical tests are conducted by MAC system under different prestress levels.The results showed that compared to the non-prestress condition,the impact resistance performance of prestressed bolts(cables)is significantly reduced.In the prestress range of 50–160 k N,the maximum reduction rate of impact energy resisted by different types of bolts is 53.9%–61.5%compared to non-prestress condition.In the prestress range of 150–300 k N,the impact energy resisted by high-strength cable is reduced by76.8%–84.6%compared to non-prestress condition.The MAC system achieves dynamic-static coupling performance test,which provide an effective means for the design of anchorage support system.展开更多
文摘目的探究血清晚期糖基化终产物受体(RAGE)、高迁移率族蛋白B1(high mobility group protein B1,HMGB1)水平与重症肺炎(SP)急性呼吸窘迫综合征(ARDS)发病及γ-干扰素(IFN-γ)/白细胞介素4(IL-4)变化的关系。方法前瞻性选取2020年3月至2022年2月我院收治的100例SP患儿为研究对象,根据患儿是否发生继发性ARDS将患儿分为ARDS组(n=56)和对照组(n=44),收集患儿一般资料,采集外周血以酶联免疫吸附法进行RAGE、HMGB1、IFN-γ和IL-4表达水平检测,采用多因素logistic回归分析SP患儿继发ARDS的影响因素,采用Pearson相关性分析其与IFN-γ/IL-4的相关性,并采用受试者工作曲线(ROC)分析RAGE、HMGB1表达对SP患儿继发ARDS的预测价值。结果两组SP患儿性别、年龄、体温以及发病季节之间无显著差异,ARDS组致病菌种类多于对照组,PaO_(2)/FiO_(2)和APS评分、血清RAGE、HMGB1、IFN-γ和IL-4表达水平以及IFN-γ/IL-4比值均高于对照组(P<0.05)。经多因素logistic回归分析可知,致病菌种类、PaO_(2)/FiO_(2)、RAGE、HMGB1表达、IFN-γ、IL-4和IFN-γ/IL-4均为SP患儿继发ARDS的影响因素。经Pearson相关检验,SP患儿血清RAGE、HMGB1表达水平与IFN-γ、IL-4和IFN-γ/IL-4均呈正相关(P<0.05)。经ROC曲线分析可得,血清RAGE、HMGB1水平预测SP患儿发生ARDS的AUC分别为0.707和0.750,灵敏度分别为73.2%、64.3%,特异度分别为68.2%、77.3%,两者联合预测的AUC为0.848,灵敏度和特异度分别为80.4%和81.8%。结论SP继发ARDS患儿血清中RAGE、HMGB1表达水平较高,与IFN-γ/IL-4呈正相关,监测患儿血清RAGE、HMGB1表达对SP患儿继发ARDS的风险有一定的预测价值。
文摘Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.
基金This work was supported by the National Natural Science Foundation of China(Nos.12335007,11835001,11921006,12035001 and 12205340)the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2020KFY13)Gansu Natural Science Foundation(No.22JR5RA123).
文摘The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an excellent test for stateof-the-art nuclear models.The atomic nucleus is a self-organized quantum manybody system comprising specific numbers of protons Z and neutrons N.
基金supported by the National Research Foundation of Korea(No.2021R1A2B5B03001691).
文摘Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing.However,recent growth has occurred in this field due to advances in diagnostic technologies,device miniaturization,and progress in wearable electronics.Among these developments,electrochemical sensors have attracted interest in the POCT field due to their high sensitivity,compact size,and affordability.They are used in various applications,from disease diagnosis to health status monitoring.In this paper we explore recent advancements in electrochemical sensors,the methods of fabricating them,and the various types of sensing mechanisms that can be used.Furthermore,we delve into methods for immobilizing specific biorecognition elements,including enzymes,antibodies,and aptamers,onto electrode surfaces and how these sensors are used in real-world POCT settings.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2021EEEVL0204 and 2018A02。
文摘As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.
基金supported by the National Natural Science Foundation of China(Nos.51927807,52074164,42277174,42077267 and 42177130)the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)China University of Mining and Technology(Beijing)Top Innovative Talent Cultivation Fund for Doctoral Students(No.BBJ2023048)。
文摘In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses and strong disturbances and construction conditions such as the application of high prestress.It is essential to study the support components performance under dynamic-static coupling conditions.Based on this,a multi-functional anchorage support dynamic-static coupling performance test system(MAC system)is developed,which can achieve 7 types of testing functions,including single component performance,anchored net performance,anchored rock performance and so on.The bolt and cable mechanical tests are conducted by MAC system under different prestress levels.The results showed that compared to the non-prestress condition,the impact resistance performance of prestressed bolts(cables)is significantly reduced.In the prestress range of 50–160 k N,the maximum reduction rate of impact energy resisted by different types of bolts is 53.9%–61.5%compared to non-prestress condition.In the prestress range of 150–300 k N,the impact energy resisted by high-strength cable is reduced by76.8%–84.6%compared to non-prestress condition.The MAC system achieves dynamic-static coupling performance test,which provide an effective means for the design of anchorage support system.