为了探究冲压压强和样件表面粗糙度对22MnB5钢板的界面换热系数(Interfacial heat transfer coefficient,以下简称IHTC)的影响,自主设计了圆台试验模型,利用Beck非线性估算法,求解热成形工艺中高温样件与低温模具间界面换热系数。实验...为了探究冲压压强和样件表面粗糙度对22MnB5钢板的界面换热系数(Interfacial heat transfer coefficient,以下简称IHTC)的影响,自主设计了圆台试验模型,利用Beck非线性估算法,求解热成形工艺中高温样件与低温模具间界面换热系数。实验中通过调整冲压压强和改变样件表面粗糙度的方式,进而改变模具与样件间接触表面微观形貌,探究其对IHTC的影响。研究表明:压强与IHTC存在高度近似的正幂函数关系;粗糙度也会对IHTC产生影响,并且当粗糙度大于1μm时,IHTC值会随粗糙度的增大而明显减小,当粗糙度小于1μm时,由于表面氧化皮的影响,IHTC将随粗糙度值的减小而增大放缓,甚至趋于定值而不再增加。展开更多
The high pressure die casting (HPDC) process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today's manufacturing industry...The high pressure die casting (HPDC) process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today's manufacturing industry. In this study, a high pressure die casting experiment using AZ91D magnesium alloy was conducted, and the temperature profiles inside the die were measured. By using a computer program based on solving the inverse heat problem, the metal/die interfacial heat transfer coefficient (IHTC) was calculated and studied. The results show that the IHTC between the metal and die increases right after the liquid metal is brought into the cavity by the plunger, and decreases as the solidification process of the liquid metal proceeds until the liquid metal is completely solidified, when the IHTC tends to be stable. The interfacial heat transfer coefficient shows different characteristics under different casting wall thicknesses and varies with the change of solidification behavior.展开更多
文摘为了探究冲压压强和样件表面粗糙度对22MnB5钢板的界面换热系数(Interfacial heat transfer coefficient,以下简称IHTC)的影响,自主设计了圆台试验模型,利用Beck非线性估算法,求解热成形工艺中高温样件与低温模具间界面换热系数。实验中通过调整冲压压强和改变样件表面粗糙度的方式,进而改变模具与样件间接触表面微观形貌,探究其对IHTC的影响。研究表明:压强与IHTC存在高度近似的正幂函数关系;粗糙度也会对IHTC产生影响,并且当粗糙度大于1μm时,IHTC值会随粗糙度的增大而明显减小,当粗糙度小于1μm时,由于表面氧化皮的影响,IHTC将随粗糙度值的减小而增大放缓,甚至趋于定值而不再增加。
文摘The high pressure die casting (HPDC) process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today's manufacturing industry. In this study, a high pressure die casting experiment using AZ91D magnesium alloy was conducted, and the temperature profiles inside the die were measured. By using a computer program based on solving the inverse heat problem, the metal/die interfacial heat transfer coefficient (IHTC) was calculated and studied. The results show that the IHTC between the metal and die increases right after the liquid metal is brought into the cavity by the plunger, and decreases as the solidification process of the liquid metal proceeds until the liquid metal is completely solidified, when the IHTC tends to be stable. The interfacial heat transfer coefficient shows different characteristics under different casting wall thicknesses and varies with the change of solidification behavior.