A micromechanical model is presented to study the initiation and propagation of microcracks of intermetallic compounds(IMCs)in solder joints.The effects of the grain aggregate morphology,the grain boundary defects and...A micromechanical model is presented to study the initiation and propagation of microcracks of intermetallic compounds(IMCs)in solder joints.The effects of the grain aggregate morphology,the grain boundary defects and the sensitivity of the various cohesive zone parameters in predicting the overall mechanical response are investigated.The overall strength is predominantly determined by the weak grain interfaces;both the grain aggregate morphology and the weak grain interfaces control the crack configuration;the different normal and tangential strengths of grain interfaces result in different intergranular cracking behaviors and play a critical role in determining the macroscopic mechanical response of the system.展开更多
The microstructures of the brazed joints for commercially pure Ti and stainless steel were investigated by the applications of various filler alloys including Ag-, Ti-, Zr- and Ni-based alloys. Generally, the dissimil...The microstructures of the brazed joints for commercially pure Ti and stainless steel were investigated by the applications of various filler alloys including Ag-, Ti-, Zr- and Ni-based alloys. Generally, the dissimilar joints between Ti and stainless steel were dominated by the Ti-based intermetallic compounds (IMCs), e.g. (Ti, Zr)2(Fe, Ni), TiFe, TiCu, and Ti2(Fe, Ni), due to a significant dissolution of Ti from the base metal. The (Fe-Cr) cr phase was also observed near the stainless steel due to a segregation of Cr into the interface region. This research demonstrates empirically that the brittleness of the Ti and stainless steel joint can not be avoided only by applying single braze alloy or single insert metal, and thus an introduction of additional suitable interlayer between the filler alloy and the base metal is necessary to prevent the brittleness of the joint.展开更多
基金supported by the NationalNatural Science Foundation of China (NSFC) under Grant 11872078,and Beijing Natural Science Foundation No.3222005.
文摘A micromechanical model is presented to study the initiation and propagation of microcracks of intermetallic compounds(IMCs)in solder joints.The effects of the grain aggregate morphology,the grain boundary defects and the sensitivity of the various cohesive zone parameters in predicting the overall mechanical response are investigated.The overall strength is predominantly determined by the weak grain interfaces;both the grain aggregate morphology and the weak grain interfaces control the crack configuration;the different normal and tangential strengths of grain interfaces result in different intergranular cracking behaviors and play a critical role in determining the macroscopic mechanical response of the system.
基金supported by the Korea Atomic Energy Research Institute (KAERI) R&D Program
文摘The microstructures of the brazed joints for commercially pure Ti and stainless steel were investigated by the applications of various filler alloys including Ag-, Ti-, Zr- and Ni-based alloys. Generally, the dissimilar joints between Ti and stainless steel were dominated by the Ti-based intermetallic compounds (IMCs), e.g. (Ti, Zr)2(Fe, Ni), TiFe, TiCu, and Ti2(Fe, Ni), due to a significant dissolution of Ti from the base metal. The (Fe-Cr) cr phase was also observed near the stainless steel due to a segregation of Cr into the interface region. This research demonstrates empirically that the brittleness of the Ti and stainless steel joint can not be avoided only by applying single braze alloy or single insert metal, and thus an introduction of additional suitable interlayer between the filler alloy and the base metal is necessary to prevent the brittleness of the joint.
基金supported by the National Natural Science Foundation of China(Nos.51871128,51875300)the Natural Science Foundation of Shandong Province,China(No.ZR2018MEE017)+1 种基金Local Science and Technology Development Projects Guided by the Central Government,China(No.YDZX20203700003578)2021 Major Industrial Key Project of Transformation of Old and New Driving Forces in Shandong Province,China。