期刊文献+
共找到69,313篇文章
< 1 2 250 >
每页显示 20 50 100
Instrumented oscillographic study on impact toughness of an axle steel DZ2 with different tempering temperatures
1
作者 Shuo Liu Peng Zhang +6 位作者 Bin Wang Kaizhong Wang Zikuan Xu Fangzhong Hu Xin Bai Qiqiang Duan Zhefeng Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1590-1598,共9页
Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the... Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the strength and toughness of a DZ2 axle steel at various tempering temperatures and the cause of the improvement in impact toughness was evaluated.The tempering process dramatically influenced carbide precipitation behavior,which resulted in different aspect ratios of carbides.Impact toughness improved along with the rise in tempering temperature mainly due to the increase in energy required in impact crack propagation.The characteristics of the impact crack propagation process were studied through a comprehensive analysis of stress distribution,oscilloscopic impact statistics,fracture morphology,and carbide morphology.The poor impact toughness of low-tempering-temperature specimens was attributed to the increased number of stress concentration points caused by carbide morphology in the small plastic zone during the propagation process,which resulted in a mixed distribution of brittle and ductile fractures on the fracture surface. 展开更多
关键词 axle steel DZ2 tempering process impact toughness oscillographic impact test impact crack propagation carbides
下载PDF
A novel approach to the dynamic response analysis of Euler-Bernoulli beams resting on a Winkler soil model and subjected to impact loads
2
作者 Adolfo Foriero Filippo Santucci de Magistris Giovanni Fabbrocino 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期389-401,共13页
This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less impor... This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem. 展开更多
关键词 beam-Winkler-soil model sub-grade moduli impact load impact distributed line load dynamic solution impact amplification factor
下载PDF
Velocity equation for grenades while impacting on dry sand media
3
作者 Martin Macko Xuan Son Bui +4 位作者 Kongsathit Phanthavong Duc Hung Pham Van Gion Do Van Minh Do Jiri Skala 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期168-173,共6页
This paper deals with the collision of sphere shape grenades with sand media.The central issue of the article is the establishing of an empirical velocity equation of the grenade while impacting on sand that is used t... This paper deals with the collision of sphere shape grenades with sand media.The central issue of the article is the establishing of an empirical velocity equation of the grenade while impacting on sand that is used to solve motion equations of the mechanical mechanism inside the impact grenade fuze.The paper focuses on impact velocities that are lower than 5 m s^(-1).An experiment was conducted to study the velocity of the grenade while impacting on dry sand.A high-speed camera video was used to capture the grenade positions.The grenade velocity in the impact process was generated from these video data.Some types of fitting curves are used to regress the velocity equation of the grenade while interacting with the sand media and the best-fitting model is chosen.The result shows the regression curve has a high correlation with the experiment data for grenade velocities below 5 m s^(-1).The received regression equation is useful for analyzing the working ability of the inertial mechanism inside the impact grenade or analyzing and choosing the appropriate parameters of each part in the inertial mechanism to meet the required characteristics of the mechanism. 展开更多
关键词 Dynamic response impact velocity impact grenade Low-velocity impact
下载PDF
On the effect of pitch and yaw angles in oblique impacts of smallcaliber projectiles
4
作者 Teresa Fras 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期73-94,共22页
A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combin... A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance. 展开更多
关键词 Ballistic impact Small-caliber projectile Pitch and yaw impact angles SHADOWGRAPHY IMPETUS Afea Numerical simulations
下载PDF
Effects of projectile parameters on the momentum transfer and projectile melting during hypervelocity impact
5
作者 Wenjin Liu Qingming Zhang +6 位作者 Renrong Long Zizheng Gong Ren Jiankang Xin Hu Siyuan Ren Qiang Wu Guangming Song 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期89-103,共15页
The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation resul... The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection. 展开更多
关键词 Hypervelocity impact Energy partitioning impact melting Momentum transfer
下载PDF
Study on damage mechanism and damage distribution of the rear plate under impact of debris cloud
6
作者 Chenyang Wu Xiaowei Chen Qiguang He 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期151-167,共17页
The debris cloud generated by the hypervelocity impact(HVI)of orbiting space debris directly threatens the spacecraft.A full understanding of the damage mechanism of rear plate is useful for the optimal design of prot... The debris cloud generated by the hypervelocity impact(HVI)of orbiting space debris directly threatens the spacecraft.A full understanding of the damage mechanism of rear plate is useful for the optimal design of protective structures.In this study,the hypervelocity yaw impact of a cylindrical aluminum projectile on a double-layer aluminum plate is simulated by the FE-SPH adaptive method,and the damage process of the rear plate under the impact of the debris cloud is analyzed based on the debris cloud structure.The damage process can be divided into the main impact stage of the debris cloud and the structural response of the rear plate.The main impact stage lasts a short time and is the basis of the rear plate damage.In the stage of structure response,the continuous deformation and inertial motion of the rear plate dominate the perforation of the rear plate.We further analyze the damage mechanism and damage distribution characteristics of the rear plate in detail.Moreover,the connection between velocity space and position space of the debris cloud is established,which promotes the general analysis of the damage law of debris cloud.Based on the relationship,the features of typical damage areas are identified by the localized fine analysis.Both the cumulative effect and structural response cause the perforation of rear plate;in the non-perforated area,cratering by the impact of hazardous fragments is the main damage mode of the rear plate. 展开更多
关键词 Damage of rear plate Debris cloud Secondary impact Hypervelocity yaw impact FE-SPH adaptive method
下载PDF
Nonlinear Impact Damage Evolution of Charpy Type and Analysis of Its Key Influencing Factors
7
作者 Jianfeng Mao Qian Xu +4 位作者 Jiadong Yang Chi Cao Dasheng Wang Fengping Zhong Mingya Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期254-264,共11页
The current research of Charpy impact mainly focuses on obtaining the ductile brittle transition temperature of materials by experiments.Compared with experiments,numerical simulation can study many problems with hars... The current research of Charpy impact mainly focuses on obtaining the ductile brittle transition temperature of materials by experiments.Compared with experiments,numerical simulation can study many problems with harsh conditions.However,there are still few studies on the influence of geometric factors such as side grooves.In this paper,the geometry of standard Charpy impact test is designed.Specimens with different widths and side grooves are tested.The finite element model of Charpy impact was established by ABAQUS software.Use test results and simulation results to verify each other.The effects of sample width,side groove depth and side groove bottom fillet on the impact fracture resistance of the sample were studied.The results show that the specimen width is positively correlated with the impact toughness of the specimen.The side groove greatly reduces the impact toughness of the material;the toughness of side groove decreases with the increase of depth;the fracture toughness of side groove decreases with the increase of fillet at the bottom of side groove.The proportion of toughness energy to impact energy of samples was analyzed.The results show that the toughness energy accounts for about 70%of the impact energy of the sample,which has little to do with the geometric characteristics of the sample.This study presents a reliable method for studying Charpy impact tests.The influence of geometric parameters is obtained,which provides a reference method for the study of impact toughness of high toughness materials. 展开更多
关键词 Johnson-Cook model impact toughness Charpy impact
下载PDF
Environmental Impact Assessment of Onshore Wind Farms in the Region of Central Greece Using a Modified RIAM Method
8
作者 Olga Korozi Dimitra G.Vagiona 《Journal of Environmental & Earth Sciences》 CAS 2024年第1期71-82,共12页
Wind energy is one of the most basic forms of renewable energy,which shows an increasing rate of development worldwide and also at the European level.However,this rapid deployment of wind farms makes the need for an i... Wind energy is one of the most basic forms of renewable energy,which shows an increasing rate of development worldwide and also at the European level.However,this rapid deployment of wind farms makes the need for an impact assessment of this type of projects on the natural and man-made environment imperative.The present paper aims to identify and assess the environmental impacts of wind farm projects in the Region of Central Greece.A modified Rapid Impact Assessment Matrix(RIAM)method is used for this purpose.The methodology includes the identification of the existing onshore wind farm projects in the study area,the appropriate modifications of the RIAM method to respond to the characteristics of the projects and the study area,the qualitative assessment of their potential impacts during construction and operational phases and the computation of the Environmental Performance Grade(EPG)of projects based on the pro-posed modified RIAM method.The results reveal that although there are some slight negative impacts on the natural environment of the study area,the examined wind farms contribute positively both to the atmosphere and to the socio-economic environment of the study.This study extends the potential for using RIAM as a tool in environmental impact assessment studies of renewable energy projects. 展开更多
关键词 Environmental impact assessment Environmental components Region of central Greece Rapid impact assessment matrix(RIAM) Environmental performance grade(EPG)
下载PDF
Development of a Side Door Composite Impact Beam for the Automotive Industry
9
作者 Vinay Papaiya Jens Schuster Yousuf Pasha Shaik 《Open Journal of Composite Materials》 2024年第1期1-14,共14页
The automobile industry has been searching for vehicles that use less energy and emit fewer pollutants, which has resulted in a high demand for fuel-efficient vehicles. Because of their higher strength-to-weight ratio... The automobile industry has been searching for vehicles that use less energy and emit fewer pollutants, which has resulted in a high demand for fuel-efficient vehicles. Because of their higher strength-to-weight ratio compared to traditional steel, using fiber-reinforcement composite materials in automobile bodies has emerged as the most effective strategy for improving fuel efficiency while maintaining safety standards. This research paper examined the utilization of fiber-reinforced composite materials in car bodies to meet the increasing consumer demand for fuel-efficient and eco-friendly vehicles. It particularly focused on a carbon-aramid fiber-reinforced composite impact beam for passenger car side door impact protection. Despite the encouraging prospects of the carbon-aramid fiber-reinforced beam, the research uncovered substantial defects in the fabrication process, resulting in diminished load-bearing capacity and energy absorption. As a result, the beam was un-successful in three-point bending tests. This was accomplished by using an I cross-section design with varying thickness because of the higher area moment of inertia. Vacuum-assisted resin transfer molding (VARTM) manufacturing process was used and the finished beam underwent to three-point bending tests. 展开更多
关键词 Side-Door impact Beam impact Energy Absorption Carbon-Aramid Reinforcement VARTM
下载PDF
The impact of demographic dynamics on food consumption and its environmental outcomes:Evidence from China 被引量:2
10
作者 Shaoting Li Xuan Chen +1 位作者 Yanjun Ren Thomas Glauben 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期414-429,共16页
With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how ... With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how it responds to demographic dynamics,particularly in emerging economies like China.Using the two-stage Quadratic Almost Demand System(QUAIDS)model,this study empirically examines the impact of demographic dynamics on food consumption and its environmental outcomes based on the provincial data from 2000 to 2020 in China.Under various scenarios,according to changes in demographics,we extend our analysis to project the long-term trend of food consumption and its environmental impacts,including greenhouse gas(GHG)emissions,water footprint(WF),and land appropriation(LA).The results reveal that an increase in the proportion of senior people significantly decreases the consumption of grain and livestock meat and increases the consumption of poultry,egg,and aquatic products,particularly for urban residents.Moreover,an increase in the proportion of males in the population leads to higher consumption of poultry and aquatic products.Correspondingly,in the current scenario of an increased aging population and sex ratio,it is anticipated that GHG emissions,WF,and LA are likely to decrease by 1.37,2.52,and 3.56%,respectively.More importantly,in the scenario adhering to the standards of nutritional intake according to the Dietary Guidelines for Chinese Residents in 2022,GHG emissions,WF,and LA in urban areas would increase by 12.78,20.94,and 18.32%,respectively.Our findings suggest that changing demographics should be considered when designing policies to mitigate the diet-environment-health trilemma and achieve sustainable food consumption. 展开更多
关键词 demographic dynamics food consumption environmental impacts nutrition intakes
下载PDF
Predicting impact strength of perforated targets using artificial neural networks trained on FEM-generated datasets
11
作者 Nikita Kazarinov Aleksandr Khvorov 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期32-44,共13页
The paper considers application of artificial neural networks(ANNs)for fast numerical evaluation of a residual impactor velocity for a family of perforated PMMA(Polymethylmethacrylate)targets.The ANN models were train... The paper considers application of artificial neural networks(ANNs)for fast numerical evaluation of a residual impactor velocity for a family of perforated PMMA(Polymethylmethacrylate)targets.The ANN models were trained using sets of numerical results on impact of PMMA plates obtained via dynamic FEM coupled with incubation time fracture criterion.The developed approach makes it possible to evaluate the impact strength of a particular target configuration without complicated FEM calculations which require considerable computational resources.Moreover,it is shown that the ANN models are able to predict results for the configurations which cannot be processed using the developed FEM routine due to numerical instabilities and errors:the trained neural network uses information from successful computations to obtain results for the problematic cases.A simple static problem of a perforated plate deformation is discussed prior to the impact problem and preferable ANN architectures are presented for both problems.Some insight into the perforation pattern optimization using a genetic algorithm coupled with the ANN is also made and optimized perforation patterns which theoretically enhance the target impact strength are constructed. 展开更多
关键词 Machine learning impact Dynamic fracture FEM Mesh distortion Optimization
下载PDF
Impact resistance performance and optimization of the sand-EPE composite cushion in rock sheds
12
作者 YU Bingxin ZHOU Xiaojun +2 位作者 TANG Jianhui ZHANG Yujin ZHANG Yuefeng 《Journal of Mountain Science》 SCIE CSCD 2024年第2期676-689,共14页
Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion wa... Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion was proposed.A series of model experiments of rockfall impact on rock sheds were conducted,and the buried depth of the EPE foam board in the sand layer was considered.The impact load and dynamic response of the rock shed were investigated.The results show that the maximum impact load and dynamic response of the rock shed roof are all significantly less than those of the sand cushion.Moreover,as the distance between the EPE foam board and rock shed roof decreases,the maximum rockfall impact force and impact pressure gradually decrease,and the maximum displacement,acceleration and strain of the rock shed first decrease and then change little.In addition,the vibration acceleration and vertical displacement of the rock shed roof decrease from the centre to the edge and decrease faster along the longitudinal direction than that along the transverse direction.In conclusion,the buffering effect of the sand-EPE composite cushion is better than that of the pure sand cushion,and the EPE foam board at a depth of 1/3 the thickness of the sand layer is appropriate. 展开更多
关键词 ROCKFALL Rock shed impact Composite cushion Buffering effect Dynamic response
下载PDF
The impact of maternal immune activation on the morphology and electrophysiological properties of postnatally-born neurons in the offspring
13
作者 Emilio J.Galván Angelica Zepeda 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期399-400,共2页
Pregnancy comes with a combination of physical changes and physiological immunosuppression that increases the susceptibility of women to pathogens and in turn,rises the prevalence of infectious diseases.
关键词 PREVALENCE ACTIVATION impact
下载PDF
Impacts of Future Changes in Heavy Precipitation and Extreme Drought on the Economy over South China and Indochina
14
作者 Bin TANG Wenting HU +4 位作者 Anmin DUAN Yimin LIU Wen BAO Yue XIN Xianyi YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1184-1200,I0022-I0034,共30页
Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distribut... Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distributed along the coastline and greatly affected by global warming,understanding the possible economic impacts induced by future changes in the maximum consecutive 5-day precipitation(RX5day)and the maximum consecutive dry days(CDD)is critical for adaptation planning in this region.Based on the latest data released by phase 6 of the Coupled Model Intercomparison Project(CMIP6),future projections of precipitation extremes with bias correction and their impacts on GDP over the INCSC region under the fossil-fueled development Shared Socioeconomic Pathway(SSP5-8.5)are investigated.Results indicate that RX5day will intensify robustly throughout the INCSC region,while CDD will lengthen in most regions under global warming.The changes in climate consistently dominate the effect on GDP over the INCSC region,rather than the change of GDP.If only considering the effect of climate change on GDP,the changes in precipitation extremes bring a larger impact on the economy in the future to the provinces of Hunan,Jiangxi,Fujian,Guangdong,and Hainan in South China,as well as the Malay Peninsula and southern Cambodia in Indochina.Thus,timely regional adaptation strategies are urgent for these regions.Moreover,from the sub-regional average viewpoint,over two thirds of CMIP6 models agree that maintaining a lower global warming level will reduce the economic impacts from heavy precipitation over the INCSC region. 展开更多
关键词 CMIP6 heavy precipitation extreme drought South China INDOCHINA economic impact
下载PDF
Reinforcing effects of polypropylene on energy absorption and fracturing of cement-based tailings backfill under impact loading
15
作者 Jiajian Li Shuai Cao Erol Yilmaz 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期650-664,共15页
Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits su... Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill. 展开更多
关键词 cement-based tailings fiber-reinforced backfills FRACTURE energy absorption impact loading
下载PDF
Dynamic impact properties of deep sandstone under thermal-hydraulicmechanical coupling loads
16
作者 CAO Chunhui DING Haonan ZOU Baoping 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2113-2129,共17页
The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To... The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To investigate the impact of this complex mechanical environment on the dynamic characteristics of roof sandstone in self-formed roadways without coal pillars,standard specimens of deep sandstone from the 2611 upper tunnel working face of the Yongmei Company within the Henan Coal Chemical Industry Group in Henan,China were prepared,and an orthogonal test was designed.Using a self-developed geotechnical dynamic impact mechanics test system,triaxial dynamic impact tests under thermal-hydraulicmechanical coupling conditions were conducted on deep sandstone.The results indicate that under high confining pressure,deep sandstone exhibits pronounced brittle failure at low temperatures,with peak strength gradually decreasing as temperature and osmotic water pressure increase.Conversely,under low confining pressure and low temperature,the brittleness of deep sandstone weakens gradually,while ductility increases.Moreover,sandstone demonstrates higher peak strength at low temperatures under high axial pressure conditions,lower peak strength at high temperatures,and greater strain under low axial pressure and high osmotic water pressure.Increases in impact air pressure and osmotic water pressure have proportionally greater effects on peak stress and peak strain.Approximately 50%of the input strain energy is utilized as effective energy driving the sandstone fracture process.Polar analysis identifies the optimal combination of factors affecting the peak stress and peak strain of sandstone.Under the coupling effect,intergranular and transgranular fractures occur within the sandstone.SEM images illustrate that the damage forms range from minor damage with multiple fissures to extensive fractures and severe fragmentation.This study elucidates the varied dynamic impact mechanical properties of deep sandstones under thermal-hydraulic-mechanical coupling,along with multifactor analysis methods and their optimal factor combinations. 展开更多
关键词 Deep sandstone Thermal-hydraulicmechanical coupling Dynamic impact STRESS-STRAIN Failure Modes Polar analysis
下载PDF
Impact pressure of waves generated by landslides on bank slopes
17
作者 CAO Ting WANG Pingyi +1 位作者 QIU Zhenfeng LIU Jie 《Journal of Mountain Science》 SCIE CSCD 2024年第3期918-931,共14页
Impulse waves that are generated by landslides in narrow reservoir areas threaten the stability of buildings and bank slopes.To discuss the action process and evolution law of the wave pressure on bank slopes,a three-... Impulse waves that are generated by landslides in narrow reservoir areas threaten the stability of buildings and bank slopes.To discuss the action process and evolution law of the wave pressure on bank slopes,a three-dimensional physical model test that considers impulse waves generated by landslides was performed,and factors including landslide width,thickness,slope angles of the sliding surface,and bank slope angle were considered.Based on wave forms on the bank slopes,wave pressure curve characteristics,and peak value,the action process of wave pressure could be divided into the following stages:maximum pulsating pressure stage,wave impact stage(when waves break),and stationary pulsation stage.It was found that wave breaking is dependent on the value of the surf similarity parameterξ.The distribution pattern of impact pressure decays linearly on both sides of the maximum impact pressure point,and the attenuation degree decreases when it attains 40%of the maximum value.Thus,it is proposed that the prediction formula for the maximum effective impact pressure of the bank slope be related to the reciprocal of wave steepness,relative water depth,and slope rate.The prediction formula provides strong theoretical support for early safety warning and for predicting the bank slope under impulse waves generated by landslides. 展开更多
关键词 Model test impact pressure Action stage Breaking discrimination Distribution model
下载PDF
Characterizing structure of cross-disciplinary impact of global disciplines:A perspective of the Hierarchy of Science
18
作者 Ruolan Liu Jin Mao +1 位作者 Gang Li Yujie Cao 《Journal of Data and Information Science》 CSCD 2024年第1期53-81,共29页
Purpose:Interdisciplinary fields have become the driving force of modern science and a significant source of scientific innovation.However,there is still a paucity of analysis about the essential characteristics of di... Purpose:Interdisciplinary fields have become the driving force of modern science and a significant source of scientific innovation.However,there is still a paucity of analysis about the essential characteristics of disciplines’cross-disciplinary impact.Design/methodology/approach:In this study,we define cross-disciplinary impact on one discipline as its impact to other disciplines,and refer to a three-dimensional framework of variety-balance-disparity to characterize the structure of cross-disciplinary impact.The variety of cross-disciplinary impact of the discipline was defined as the proportion of the high cross-disciplinary impact publications,and the balance and disparity of cross-disciplinary impact were measured as well.To demonstrate the cross-disciplinary impact of the disciplines in science,we chose Microsoft Academic Graph(MAG)as the data source,and investigated the relationship between disciplines’cross-disciplinary impact and their positions in the Hierarchy of Science(HOS).Findings:Analytical results show that there is a significant correlation between the ranking of cross-disciplinary impact and the HOS structure,and that the discipline exerts a greater cross-disciplinary impact on its neighboring disciplines.Several bibliometric features that measure the hardness of a discipline,including the number of references,the number of cited disciplines,the citation distribution,and the Price index have a significant positive effect on the variety of cross-disciplinary impact.The number of references,the number of cited disciplines,and the citation distribution have significant positive and negative effects on balance and disparity,respectively.It is concluded that the less hard the discipline,the greater the cross-disciplinary impact,the higher balance and the lower disparity of cross-disciplinary impact.Research limitations:In the empirical analysis of HOS,we only included five broad disciplines.This study also has some biases caused by the data source and applied regression models.Practical implications:This study contributes to the formulation of discipline-specific policies and promotes the growth of interdisciplinary research,as well as offering fresh insights for predicting the cross-disciplinary impact of disciplines.Originality/value:This study provides a new perspective to properly understand the mechanisms of cross-disciplinary impact and disciplinary integration. 展开更多
关键词 Interdisciplinary research cross-disciplinary Scientific impact Soft science Hard science CITATION
下载PDF
Plastic deformation behavior of a Cu-10Ta alloy under strong impact loading
19
作者 Ping Song Jianghai Liu +1 位作者 Wenbin Li Yiming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期368-382,共15页
In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volu... In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volume specific heat,are tested.Via the split Hopkinson pressure bar(SHPB)and flyerplate impact experiments,the relationship between equivalent stress and equivalent plastic strain of the material is studied at temperatures of 298-823 K and under strain rates of 1×10^(-3)-5.2×10^(3)s^(-1),and the Hugoniot relationship at impact pressures of 1.46-17.25 GPa and impact velocities of 108-942 m/s is obtained.Evolution of the Cu-10Ta microstructure that occurs during high-strain-rate impact is analyzed.Results indicate that the Cu-10Ta alloy possesses good thermal stability,and at ambient temperatures of up to 50%its melting point,stress softening of less than 15%of the initial strength is observed.A modified J-C constitutive model is employed to accurately predict the variation of yield strength with strain rate.Under strong impact,the copper phase is identified as the primary source of plastic deformation in the Cu-10Ta alloy,while significant deformation of the high-strength tantalum particles is less pronounced.Furthermore,the longitudinal wave speed D is found to correlate linearly with the particle velocity u upon strong impact.Analysis reveals that the sound speed and spallation strength of the alloy increase with increasing impact pressure. 展开更多
关键词 Cu-10Ta SHPB Plastic deformation Flyer impact Hugoniot relationship
下载PDF
Dynamic-based model for calculating the boulder impact force in debris flow
20
作者 YANG Chaoping ZHANG Shaojie +2 位作者 YIN Yueping YANG Hongjuan WEI Fangqiang 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1930-1940,共11页
The boulder impact force in debris flow is generally calculated by static methods such as the cantilever beam models.However,these methods cannot describe the dynamic scenario of boulder collision on structures,so the... The boulder impact force in debris flow is generally calculated by static methods such as the cantilever beam models.However,these methods cannot describe the dynamic scenario of boulder collision on structures,so the inertia and damping effects of the structures are not involved causing an overestimation on the boulder impact force.In order to address this issue,a dynamic-based model for calculating the boulder impact force of a debris flow was proposed in this study,and the dynamic characteristics of a cantilever beam with multiple degrees of freedom under boulder collision were investigated.By using the drop-weight method to simulate boulders within debris flow,seven experiments of drop-weight impacting the cantilever beam were used to calibrate the error of the dynamicbased model.Results indicate that the dynamic-based model is able to reconstruct the impact force history on the cantilever beam during impact time and the error of dynamic-based model is 15.3%in calculating boulder impact force,significantly outperforming the cantilever beam model’s error of 285%.Therefore,the dynamic-based model can overcome the drawbacks of the static-based models and provide a more reliable theoretical foundation for the engineering design of debris flow control structures. 展开更多
关键词 Debris flow impact force Boulder collision Dynamic-based model Engineering design
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部