The design and analysis of a reconfigurable dual-band down-conversion mixer for IMT-advanced (3.4 3.6 GHz) and UWB (4.2-4.8 GHz) applications are presented. Based on a folded double-balanced Gilbert cell, which is...The design and analysis of a reconfigurable dual-band down-conversion mixer for IMT-advanced (3.4 3.6 GHz) and UWB (4.2-4.8 GHz) applications are presented. Based on a folded double-balanced Gilbert cell, which is well known for its low voltage, simplicity and well balanced performance, the mixer adopts a capacitive cross-coupling technique for input matching and performance improvement. Switched capacitors and resistors are added to shift the working bands. Fabricated in a TSMC 0.13 #m process, the test results show flat conversion gains from 9.6 to 10.3 dB on the IMT-A band and from 9.7 to 10.4 dB on the UWB band, with a noise figure of about 15 dB on both bands. The input third-order intercept points (lIP3) are about 7,3 dBm on both of the frequency bands. The whole chip consumes 11 mW under 1.2 V supply and the total area of the layout is 0.76 × 0.65 mm^2.展开更多
基金supported by the National Science and Technology Major Special Project(No.2012ZX03001-019)
文摘The design and analysis of a reconfigurable dual-band down-conversion mixer for IMT-advanced (3.4 3.6 GHz) and UWB (4.2-4.8 GHz) applications are presented. Based on a folded double-balanced Gilbert cell, which is well known for its low voltage, simplicity and well balanced performance, the mixer adopts a capacitive cross-coupling technique for input matching and performance improvement. Switched capacitors and resistors are added to shift the working bands. Fabricated in a TSMC 0.13 #m process, the test results show flat conversion gains from 9.6 to 10.3 dB on the IMT-A band and from 9.7 to 10.4 dB on the UWB band, with a noise figure of about 15 dB on both bands. The input third-order intercept points (lIP3) are about 7,3 dBm on both of the frequency bands. The whole chip consumes 11 mW under 1.2 V supply and the total area of the layout is 0.76 × 0.65 mm^2.