The phototransformation of the herbicide Isopropyl carbanilate (IPC) has been investigated under UV light. Irradiation of the herbicide at room temperature in aqueous and organic solvents such as hexane and methanol a...The phototransformation of the herbicide Isopropyl carbanilate (IPC) has been investigated under UV light. Irradiation of the herbicide at room temperature in aqueous and organic solvents such as hexane and methanol afforded new photo-products formed as a consequence of various processes including photo-Fries rearrangement, ring solvolysis, hydrolysis of the amide/carbamoyl and ester bonds, ring coupling and polymerization. The percentage remaining of the herbicide as a function of time was followed periodically starting from zero time up to three hours. Analyses were performed by GC-FID equipped with a semipolar glass column operated at 170?C. The rate of photo disappearance of IPC under controlled lab condition followed 1st order kinetics and found to be solvent dependent in the manner of non polar > polar solvents. The photo-products were successfully separated by GC and preparative TLC (Silica gel F-254) and were identified using either GC-MS and/or MS. Identifications were assigned on the bases of molecular ions, mass fragmentation pattern and whenever possible by comparison with the mass spectra of literature analogues.展开更多
文摘The phototransformation of the herbicide Isopropyl carbanilate (IPC) has been investigated under UV light. Irradiation of the herbicide at room temperature in aqueous and organic solvents such as hexane and methanol afforded new photo-products formed as a consequence of various processes including photo-Fries rearrangement, ring solvolysis, hydrolysis of the amide/carbamoyl and ester bonds, ring coupling and polymerization. The percentage remaining of the herbicide as a function of time was followed periodically starting from zero time up to three hours. Analyses were performed by GC-FID equipped with a semipolar glass column operated at 170?C. The rate of photo disappearance of IPC under controlled lab condition followed 1st order kinetics and found to be solvent dependent in the manner of non polar > polar solvents. The photo-products were successfully separated by GC and preparative TLC (Silica gel F-254) and were identified using either GC-MS and/or MS. Identifications were assigned on the bases of molecular ions, mass fragmentation pattern and whenever possible by comparison with the mass spectra of literature analogues.