ICSED (Improved Cluster Shade Edge Detection) algorithm and other various methods to accurately and efficiently detect edges on satellite data are presented. Error rate criterion is used to statistically evaluate the ...ICSED (Improved Cluster Shade Edge Detection) algorithm and other various methods to accurately and efficiently detect edges on satellite data are presented. Error rate criterion is used to statistically evaluate the performances of these methods in detecting oceanic features for both noise free and noise contaminated AVHRR (Advanced Very High Resolution Radiometer) IR image with Kuroshio. Also, practical experiments in detecting the eddy of Kuroshio with these methods are carried out for comparison. Results show that the ICSED algorithm has more advantages than other methods in detecting mesoscale features of ocean. Finally, the effectiveness of window size of ICSED method to oceanic features detection is quantitatively discussed.展开更多
An ICSED (Improved Cluster Shade Edge-Detection) algorithm and a series of post-processing technique are discussed for automatic delineation of mesoscale structure of the ocean on digital IR images. The popular deriva...An ICSED (Improved Cluster Shade Edge-Detection) algorithm and a series of post-processing technique are discussed for automatic delineation of mesoscale structure of the ocean on digital IR images. The popular derivative-based edge operators are shown to be too sensitive to edge fine-structure and to weak gradients. The new edge-detection algorithm is ICSED (Improved Cluster Shade Edge-detection) method and it is found to be an excel lent edge detector that exhibits the characteristic of fine-structure rejection while retaining edge sharpness. This char acteristic is highly desirable for analyzing oceanographic satellite images. A sorting technique for separating clouds or land well from ocean at both day and night is described in order to obtain high quality mesoscale features on the IR image This procedure is evaluated on an AVHRR (Advanced Very High Resolution Radiometer) image with Kuroshio. Results and analyses show that the mesoscale features can be well identified by using ICSED algorithm.展开更多
文摘ICSED (Improved Cluster Shade Edge Detection) algorithm and other various methods to accurately and efficiently detect edges on satellite data are presented. Error rate criterion is used to statistically evaluate the performances of these methods in detecting oceanic features for both noise free and noise contaminated AVHRR (Advanced Very High Resolution Radiometer) IR image with Kuroshio. Also, practical experiments in detecting the eddy of Kuroshio with these methods are carried out for comparison. Results show that the ICSED algorithm has more advantages than other methods in detecting mesoscale features of ocean. Finally, the effectiveness of window size of ICSED method to oceanic features detection is quantitatively discussed.
文摘An ICSED (Improved Cluster Shade Edge-Detection) algorithm and a series of post-processing technique are discussed for automatic delineation of mesoscale structure of the ocean on digital IR images. The popular derivative-based edge operators are shown to be too sensitive to edge fine-structure and to weak gradients. The new edge-detection algorithm is ICSED (Improved Cluster Shade Edge-detection) method and it is found to be an excel lent edge detector that exhibits the characteristic of fine-structure rejection while retaining edge sharpness. This char acteristic is highly desirable for analyzing oceanographic satellite images. A sorting technique for separating clouds or land well from ocean at both day and night is described in order to obtain high quality mesoscale features on the IR image This procedure is evaluated on an AVHRR (Advanced Very High Resolution Radiometer) image with Kuroshio. Results and analyses show that the mesoscale features can be well identified by using ICSED algorithm.