The observation of oxygen(O)-and nitrogen(N)-bearing molecules gives an idea about the complex prebiotic chemistry in the interstellar medium.Recent millimeter and submillimeter wavelength observations have shown the ...The observation of oxygen(O)-and nitrogen(N)-bearing molecules gives an idea about the complex prebiotic chemistry in the interstellar medium.Recent millimeter and submillimeter wavelength observations have shown the presence of complex O-and N-bearing molecules in the star formation regions.So,the investigation of those molecules is crucial to understanding the chemical complexity in the star-forming regions.In this article,we present the identification of the rotational emission lines of N-bearing molecules ethyl cyanide(C_(2)H_(5)CN)and cyanoacetylene(HC_(3)N),and O-bearing molecule methyl formate(CH_(3)OCHO)toward high-mass protostar IRAS18089–1732 using the Atacama Compact Array.We also detected the emission lines of both the N-and O-bearing molecule formamide(NH_(2)CHO)in the envelope of IRAS 18089–1732.We have detected the v=0 and 1 state rotational emission lines of CH_(3)OCHO.We also detected the two vibrationally excited states of HC_(3)N(v7=1 and v7=2).The estimated fractional abundances of C_(2)H_(5)CN,HC_(3)N(v7=1),HC_(3)N(v7=2),and NH_(2)CHO toward IRAS 18089–1732 are(1.40±0.5)×10^(-10),(7.5±0.7)×10^(-11),(3.1±0.4)×10^(-11),and(6.25±0.82)×10^(-11)respectively.Similarly,the estimated fractional abundances of CH_(3)OCHO(v=0)and CH_(3)OCHO(v=1)are(1.90±0.9)×10^(-9)and(8.90±0.8)×10^(-10),respectively.We also created the integrated emission maps of the detected molecules,and the observed molecules may have originated from the extended envelope of the protostar.We show that C_(2)H_(5)CNand HC_(3)N are most probably formed via the subsequential hydrogenation of the CH_(2)CHCNand the reaction between C_(2)H_(2)and CN on the grain surface of IRAS 18089–1732.We found that NH_(2)CHO is probably produced due to the reaction between NH_(2)and H_(2)CO in the gas phase.Similarly,CH_(3)OCHO is possibly created via the reaction between radical CH_(3)O and radical HCO on the grain surface of IRAS 18089–1732.展开更多
The ISO-SWS spectrum of IRAS03313+6058 is presented. The spectral energy distribution in the full coverage of ISO-SWS between 2 3 and 45μm can be fit well by assuming the amorphous carbon as the major dust component....The ISO-SWS spectrum of IRAS03313+6058 is presented. The spectral energy distribution in the full coverage of ISO-SWS between 2 3 and 45μm can be fit well by assuming the amorphous carbon as the major dust component. In addition, a few evident spectral features are found, including the absorption bands around 7 5 and 14μm, wide emission band around 30μm and emission bands around 41 ad 43 5μm.展开更多
Based on observations of 12CO (J=2–1), we select targets from archived Infrared Astronomical Satellite (IRAS) data of IRAS 02459+6029 and IRAS 22528+5936 as samples of cloud-cloud collision, according to the criteria...Based on observations of 12CO (J=2–1), we select targets from archived Infrared Astronomical Satellite (IRAS) data of IRAS 02459+6029 and IRAS 22528+5936 as samples of cloud-cloud collision, according to the criteria given by Vallee. Then we use the Midcourse Space Experiment (MSX) A band (8.28 μm) images and the NRAO VLA Sky Survey (NVSS) (1.4 GHz) continuum images to investigate the association between molecular clouds traced by the CO contour maps. The distribution of dust and ionized hydrogen shows an obvious association with the CO contour maps toward IRAS 02459+6029. However, in the possible collision region of IRAS 22528+5936, NVSS continuum radiation is not detected and the MSX sources are merely associated with the central star. The velocity fields of the two regions indicate the direction of the pressure and interaction. In addition, we have identified candidates of young stellar objects (YSOs) by using data from the Two Micron All Sky Survey (2MASS) in JHK bands expressed in a color-color diagram. The distribution of YSOs shows that the possible collision region is denser than other regions. All the evidence suggests that IRAS 02459+6029 could be an example of cloud-cloud collision, and that IRAS 22528+5936 could be two separate non-colliding clouds.展开更多
We have carried out observations of 12CO J=2-1 and 12CO J=3-2 to- ward the high-mass protostellar candidate IRAS 20188+3928. Compared with previ- ous observations, the 12CO J=2-1 and 12CO J=3-2 lines both have asymme...We have carried out observations of 12CO J=2-1 and 12CO J=3-2 to- ward the high-mass protostellar candidate IRAS 20188+3928. Compared with previ- ous observations, the 12CO J=2-1 and 12CO J=3-2 lines both have asymmetric pro- files with an absorption dip. The velocity of the absorption dip is ~ 1.0 km s-1. The spectral shape may be caused by rotation. The velocity-integrated intensity map and position-velocity diagram of the 12CO J=2-1 line present an obvious bipolar com- ponent, further verifying that this region has an outflow motion. This region is also associated with an HII region, an IRAS source, and an H20 maser. The H20 maser has the velocity of 1.1 km s-1. Compared with the components of the outflow, we find that the H20 maser is not associated with the outflow. Using the large velocity gradi- ent model, we concluded that possible averaged gas densities of the blueshifted lobe and redshifted lobe are 1.0x 105 cm-3 and 2.0x 104 cm-a, while kinetic temperatures are 26.9 K and 52.9 K, respectively. Additionally, the outflow has a higher integrated intensity ratio (Ico J=3 - 2/Ico J=2 - 1).展开更多
基金the Swami Vivekananda Merit-cum-Means Scholarship(SVMCM)for financial support for this research。
文摘The observation of oxygen(O)-and nitrogen(N)-bearing molecules gives an idea about the complex prebiotic chemistry in the interstellar medium.Recent millimeter and submillimeter wavelength observations have shown the presence of complex O-and N-bearing molecules in the star formation regions.So,the investigation of those molecules is crucial to understanding the chemical complexity in the star-forming regions.In this article,we present the identification of the rotational emission lines of N-bearing molecules ethyl cyanide(C_(2)H_(5)CN)and cyanoacetylene(HC_(3)N),and O-bearing molecule methyl formate(CH_(3)OCHO)toward high-mass protostar IRAS18089–1732 using the Atacama Compact Array.We also detected the emission lines of both the N-and O-bearing molecule formamide(NH_(2)CHO)in the envelope of IRAS 18089–1732.We have detected the v=0 and 1 state rotational emission lines of CH_(3)OCHO.We also detected the two vibrationally excited states of HC_(3)N(v7=1 and v7=2).The estimated fractional abundances of C_(2)H_(5)CN,HC_(3)N(v7=1),HC_(3)N(v7=2),and NH_(2)CHO toward IRAS 18089–1732 are(1.40±0.5)×10^(-10),(7.5±0.7)×10^(-11),(3.1±0.4)×10^(-11),and(6.25±0.82)×10^(-11)respectively.Similarly,the estimated fractional abundances of CH_(3)OCHO(v=0)and CH_(3)OCHO(v=1)are(1.90±0.9)×10^(-9)and(8.90±0.8)×10^(-10),respectively.We also created the integrated emission maps of the detected molecules,and the observed molecules may have originated from the extended envelope of the protostar.We show that C_(2)H_(5)CNand HC_(3)N are most probably formed via the subsequential hydrogenation of the CH_(2)CHCNand the reaction between C_(2)H_(2)and CN on the grain surface of IRAS 18089–1732.We found that NH_(2)CHO is probably produced due to the reaction between NH_(2)and H_(2)CO in the gas phase.Similarly,CH_(3)OCHO is possibly created via the reaction between radical CH_(3)O and radical HCO on the grain surface of IRAS 18089–1732.
文摘The ISO-SWS spectrum of IRAS03313+6058 is presented. The spectral energy distribution in the full coverage of ISO-SWS between 2 3 and 45μm can be fit well by assuming the amorphous carbon as the major dust component. In addition, a few evident spectral features are found, including the absorption bands around 7 5 and 14μm, wide emission band around 30μm and emission bands around 41 ad 43 5μm.
文摘Based on observations of 12CO (J=2–1), we select targets from archived Infrared Astronomical Satellite (IRAS) data of IRAS 02459+6029 and IRAS 22528+5936 as samples of cloud-cloud collision, according to the criteria given by Vallee. Then we use the Midcourse Space Experiment (MSX) A band (8.28 μm) images and the NRAO VLA Sky Survey (NVSS) (1.4 GHz) continuum images to investigate the association between molecular clouds traced by the CO contour maps. The distribution of dust and ionized hydrogen shows an obvious association with the CO contour maps toward IRAS 02459+6029. However, in the possible collision region of IRAS 22528+5936, NVSS continuum radiation is not detected and the MSX sources are merely associated with the central star. The velocity fields of the two regions indicate the direction of the pressure and interaction. In addition, we have identified candidates of young stellar objects (YSOs) by using data from the Two Micron All Sky Survey (2MASS) in JHK bands expressed in a color-color diagram. The distribution of YSOs shows that the possible collision region is denser than other regions. All the evidence suggests that IRAS 02459+6029 could be an example of cloud-cloud collision, and that IRAS 22528+5936 could be two separate non-colliding clouds.
基金supported by the 2011 Ministry of Education doctoral academic prizesupported by the young researcher grant of National Astronomical Observatories,Chinese Academy of Sciences
文摘We have carried out observations of 12CO J=2-1 and 12CO J=3-2 to- ward the high-mass protostellar candidate IRAS 20188+3928. Compared with previ- ous observations, the 12CO J=2-1 and 12CO J=3-2 lines both have asymmetric pro- files with an absorption dip. The velocity of the absorption dip is ~ 1.0 km s-1. The spectral shape may be caused by rotation. The velocity-integrated intensity map and position-velocity diagram of the 12CO J=2-1 line present an obvious bipolar com- ponent, further verifying that this region has an outflow motion. This region is also associated with an HII region, an IRAS source, and an H20 maser. The H20 maser has the velocity of 1.1 km s-1. Compared with the components of the outflow, we find that the H20 maser is not associated with the outflow. Using the large velocity gradi- ent model, we concluded that possible averaged gas densities of the blueshifted lobe and redshifted lobe are 1.0x 105 cm-3 and 2.0x 104 cm-a, while kinetic temperatures are 26.9 K and 52.9 K, respectively. Additionally, the outflow has a higher integrated intensity ratio (Ico J=3 - 2/Ico J=2 - 1).