I firmly believe that of systems engineering is the requirement-driven force for the progress ofsoftware engineering, artificial intelligence and electronic technologies. The development ofsoftware engineering, artifi...I firmly believe that of systems engineering is the requirement-driven force for the progress ofsoftware engineering, artificial intelligence and electronic technologies. The development ofsoftware engineering, artificial intelligence and electronic technologies is the technical supportfor the progress of systems engineering. INTEGRATION can be considered as "bridging" the ex-isting technologies and the People together into a coordinated SYSTEM.展开更多
More than two decades ago, object-oriented representation of AEC (architecture engineering and construction) projects started to offer the promise of seamless communication of semantic data models between computer-b...More than two decades ago, object-oriented representation of AEC (architecture engineering and construction) projects started to offer the promise of seamless communication of semantic data models between computer-based systems used from the design stage to the operation of the facilities. BIM (building information modelling) emerged and appeared as a means to store all relevant data generated during the life-cycle of the facilities. But this upstream view of the built environment, arising from the design and construction stages, extended to the downstream operations where building and industrial facilities appeared more and more as huge dynamic data producers and concentrators while being operated. This created new challenges leading to what is referred to as ISCs (intelligent and smart constructions). The current state of the art is that final constructions still contain various and increasingly versatile control and service systems, which are hardly standardised, and not interconnected among themselves. Monitoring, maintenance and services are done by specialised companies, each responsible of different systems, which are relying on customised software and techniques to meet specific user needs and are based on monolithic applications that require manual configuration for specific uses, maintenance and support. We demonstrate in this paper that the early promises of integration across the actors and along the life-time of facilities have gone a long way but will only be delivered through enhanced standardisation of computerized models, representations, services and operations still not yet fully accomplished 25 years after work started.展开更多
In a hybrid system, the subsystems with discrete dynamics play a central role in a hybrid system. In the course of engineering machinery of cluster construction, the discrete control law is hard to obtain because the ...In a hybrid system, the subsystems with discrete dynamics play a central role in a hybrid system. In the course of engineering machinery of cluster construction, the discrete control law is hard to obtain because the construction environment is complex and there exist many affecting factors. In this paper, hierarchically intelligent control, expert control and fuzzy control are introduced into the discrete subsystems of engineering machinery of cluster hybrid system, so as to rebuild the hybrid system and make the discrete control law easily and effectively obtained. The structures, reasoning mechanism and arithmetic of intelligent control are replanted to discrete dynamic, conti- nuous process and the interface of the hybrid system. The structures of three types of intelligent hybrid system are presented and the human experiences summarized from engineering machinery of cluster are taken into account.展开更多
In this paper the integrative stability is studied for a class of intelligent control systems which are described by an octette structural model. Based on the definitions Of state reachability and stabilizability of i...In this paper the integrative stability is studied for a class of intelligent control systems which are described by an octette structural model. Based on the definitions Of state reachability and stabilizability of intelligent control systems the analysis method and criterion of integrative stability are given.展开更多
Blockchain technology has revolutionized conventional trade.The success of blockchain can be attributed to its distributed ledger characteristic,which secures every record inside the ledger using cryptography rules,ma...Blockchain technology has revolutionized conventional trade.The success of blockchain can be attributed to its distributed ledger characteristic,which secures every record inside the ledger using cryptography rules,making it more reliable,secure,and tamper-proof.This is evident by the significant impact that the use of this technology has had on people connected to digital spaces in the present-day context.Furthermore,it has been proven that blockchain technology is evolving from new perspectives and that it provides an effective mechanism for the intelligent transportation system infrastructure.To realize the full potential of the accurate and efficacious use of blockchain in the transportation sector,it is essential to understand the most effective mechanisms of this technology and identify the most useful one.As a result,the present work offers a priority-based methodology that would be a useful reference for security experts in managing blockchain technology and its models.The study uses the hesitant fuzzy analytical hierarchy process for prioritizing the different blockchain models.Based on the findings of actual performance,alternative solution A1 which is Private Blockchain model has an extremely high level of security satisfaction.The accuracy of the results has been tested using the hesitant fuzzy technique for order of preference by similarity to the ideal solution procedure.The study also uses guidelines from security researchers working in this domain.展开更多
An intelligent manufacturing system is a composite intelligent system comprising humans,cyber systems,and physical systems with the aim of achieving specific manufacturing goals at an optimized level.This kind of inte...An intelligent manufacturing system is a composite intelligent system comprising humans,cyber systems,and physical systems with the aim of achieving specific manufacturing goals at an optimized level.This kind of intelligent system is called a human-cyber-physical system(HCPS).In terms of technology,HCPSs can both reveal technological principles and form the technological architecture for intelligent manufacturing.It can be concluded that the essence of intelligent manufacturing is to design,construct,and apply HCPSs in various cases and at different levels.With advances in information technology,intelligent manufacturing has passed through the stages of digital manufacturing and digital-networked manufacturing,and is evolving toward new-generation intelligent manufacturing(NGIM).NGIM is characterized by the in-depth integration of new-generation artificial intelligence(AI)technology(i.e.,enabling technology)with advanced manufacturing technology(i.e.,root technology);it is the core driving force of the new industrial revolution.In this study,the evolutionary footprint of intelligent manufacturing is reviewed from the perspective of HCPSs,and the implications,characteristics,technical frame,and key technologies of HCPSs for NGIM are then discussed in depth.Finally,an outlook of the major challenges of HCPSs for NGIM is proposed.展开更多
The approach for probabilistic rationale of artificial intelligence systems actions is proposed.It is based on an implementation of the proposed interconnected ideas 1-7 about system analysis and optimization focused ...The approach for probabilistic rationale of artificial intelligence systems actions is proposed.It is based on an implementation of the proposed interconnected ideas 1-7 about system analysis and optimization focused on prognostic modeling.The ideas may be applied also by using another probabilistic models which supported by software tools and can predict successfulness or risks on a level of probability distribution functions.The approach includes description of the proposed probabilistic models,optimization methods for rationale actions and incremental algorithms for solving the problems of supporting decision-making on the base of monitored data and rationale robot actions in uncertainty conditions.The approach means practically a proactive commitment to excellence in uncertainty conditions.A suitability of the proposed models and methods is demonstrated by examples which cover wide applications of artificial intelligence systems.展开更多
In allusion to the characteristics of the open complex giant system, an open multilevel hierarchic intelligent control system is established for the eco-industrial system. With the idea of the open engineering system,...In allusion to the characteristics of the open complex giant system, an open multilevel hierarchic intelligent control system is established for the eco-industrial system. With the idea of the open engineering system, using the hall for workshop of metasynthetic engineering (HWME), intelligent control techniques, the expert system and the design of experiments are integrated within the framework of the nonlinear multiobjective decision support system to develop a robust, top-level design specification so as to make the system have the quality of adaptive control, self-organizing, self-learning and robustness. Finally, an illustrative example is given to clarify the effectiveness of the method.展开更多
Autonomous systems are an emerging AI technology functioning without human intervention underpinned by the latest advances in intelligence,cognition,computer,and systems sciences.This paper explores the intelligent an...Autonomous systems are an emerging AI technology functioning without human intervention underpinned by the latest advances in intelligence,cognition,computer,and systems sciences.This paper explores the intelligent and mathematical foundations of autonomous systems.It focuses on structural and behavioral properties that constitute the intelligent power of autonomous systems.It explains how system intelligence aggregates from reflexive,imperative,adaptive intelligence to autonomous and cognitive intelligence.A hierarchical intelligence model(HIM)is introduced to elaborate the evolution of human and system intelligence as an inductive process.The properties of system autonomy are formally analyzed towards a wide range of applications in computational intelligence and systems engineering.Emerging paradigms of autonomous systems including brain-inspired systems,cognitive robots,and autonomous knowledge learning systems are described.Advances in autonomous systems will pave a way towards highly intelligent machines for augmenting human capabilities.展开更多
With the development of automatic design and artificial intelligence techniques, intelligence already have been applied in maintainability design and analysis of military /commercial equipment. Expert system has been ...With the development of automatic design and artificial intelligence techniques, intelligence already have been applied in maintainability design and analysis of military /commercial equipment. Expert system has been used in diagnosis, design analysis, testability design, etc. In this paper, we will discuss about knowledge engineering application in two types. One is integrated knowledge base system for maintainability, it's the baseline of concurrent, intelligence design and it's also suitable for the present situation in China that there is lack of maintainability engineers. The other application is expert system for formulating maintainability design criteria and it can take full advantage of experts' experiences and past cases. Under development trend of intelligence design, these two systems will have good effects on maintainability design and analysis.展开更多
The growing number of vehicles makes traffic jams and accidents significant problems. Making people get to know the real-time road condition can mitigate the effect of congestions greatly, but this is not supported by...The growing number of vehicles makes traffic jams and accidents significant problems. Making people get to know the real-time road condition can mitigate the effect of congestions greatly, but this is not supported by traditional traffic assistant systems. The intelligent traffic system is born to settle these problems. By making full use of the ArcGIS (Arc Geographic Information System) Engine characteristics, this paper designs and imple- ments an urban traffic monitoring system. The main functions of the system include the real-time road condition information display, layer-control, supervisory control management and the basic operations of a map. With the data collected by monitors deployed in intersections, different road conditions are calculated and shown with dif- ferent colors on the map and users can choose suitable roads to get away from the traffic congestion; meanwhile it can offer a reference for a traffic management department to make decisions on traffic control. The system has been deployed and shows high practicability and reliability in practical use.展开更多
An intelligent security systems engineering approach is used to analyze fire and explosive critical incidents, a growing concern in urban communities. A feed-forward back-propagation neural network models the damages ...An intelligent security systems engineering approach is used to analyze fire and explosive critical incidents, a growing concern in urban communities. A feed-forward back-propagation neural network models the damages arising from these critical incidents. The overall goal is to promote fire safety and sustainable security. The intelligent security systems engineering prediction model uses a fully connected multilayer neural network, and considers a number of factors related to the fire or explosive incident including the type of property affected, the time of day, and the ignition source. The network was trained on a large number of critical incident records reported in Toronto, Canada between 2000 and 2006. Our intelligent security systems engineering approach can help emergency responders by improving cr^tical incident analysis, sustainable security, and fire risk management.展开更多
为实现BIM(Building Information Modeling)+GIS(Geographic Information System)技术在铁路四电工程建造过程中的应用,提出铁路四电工程智能建造方案。通过构建BIM族库、参数化建模、模型轻量化等技术手段,实现模型快速生成及项目各阶...为实现BIM(Building Information Modeling)+GIS(Geographic Information System)技术在铁路四电工程建造过程中的应用,提出铁路四电工程智能建造方案。通过构建BIM族库、参数化建模、模型轻量化等技术手段,实现模型快速生成及项目各阶段数据的集成共享;设计BIM+GIS管理平台,将项目管理过程中的生产要素信息、管理要素信息与BIM模型信息、GIS技术深度融合,满足不同管理部门、不同层级用户的三维可视化、数字化、全要素信息建设管理精益化需求,实现铁路四电工程项目的数字化交付。应用表明,该方案可为推动BIM+GIS技术在铁路四电工程的应用发展提供技术支撑。展开更多
Based on the full use of historical reservoir dispatching information, artificial intelligence is applied to grid reservoir group dispatching. A knowledge representation method, which combines dispatching rules and in...Based on the full use of historical reservoir dispatching information, artificial intelligence is applied to grid reservoir group dispatching. A knowledge representation method, which combines dispatching rules and intelligence models, is put forward. The intelligent dispatching system is established and the system architecture is presented. Additionally, the acquisition, representation and reasoning mechanism of reservoir dispatching knowledge are designed in detail.展开更多
文摘I firmly believe that of systems engineering is the requirement-driven force for the progress ofsoftware engineering, artificial intelligence and electronic technologies. The development ofsoftware engineering, artificial intelligence and electronic technologies is the technical supportfor the progress of systems engineering. INTEGRATION can be considered as "bridging" the ex-isting technologies and the People together into a coordinated SYSTEM.
文摘More than two decades ago, object-oriented representation of AEC (architecture engineering and construction) projects started to offer the promise of seamless communication of semantic data models between computer-based systems used from the design stage to the operation of the facilities. BIM (building information modelling) emerged and appeared as a means to store all relevant data generated during the life-cycle of the facilities. But this upstream view of the built environment, arising from the design and construction stages, extended to the downstream operations where building and industrial facilities appeared more and more as huge dynamic data producers and concentrators while being operated. This created new challenges leading to what is referred to as ISCs (intelligent and smart constructions). The current state of the art is that final constructions still contain various and increasingly versatile control and service systems, which are hardly standardised, and not interconnected among themselves. Monitoring, maintenance and services are done by specialised companies, each responsible of different systems, which are relying on customised software and techniques to meet specific user needs and are based on monolithic applications that require manual configuration for specific uses, maintenance and support. We demonstrate in this paper that the early promises of integration across the actors and along the life-time of facilities have gone a long way but will only be delivered through enhanced standardisation of computerized models, representations, services and operations still not yet fully accomplished 25 years after work started.
文摘In a hybrid system, the subsystems with discrete dynamics play a central role in a hybrid system. In the course of engineering machinery of cluster construction, the discrete control law is hard to obtain because the construction environment is complex and there exist many affecting factors. In this paper, hierarchically intelligent control, expert control and fuzzy control are introduced into the discrete subsystems of engineering machinery of cluster hybrid system, so as to rebuild the hybrid system and make the discrete control law easily and effectively obtained. The structures, reasoning mechanism and arithmetic of intelligent control are replanted to discrete dynamic, conti- nuous process and the interface of the hybrid system. The structures of three types of intelligent hybrid system are presented and the human experiences summarized from engineering machinery of cluster are taken into account.
文摘In this paper the integrative stability is studied for a class of intelligent control systems which are described by an octette structural model. Based on the definitions Of state reachability and stabilizability of intelligent control systems the analysis method and criterion of integrative stability are given.
文摘Blockchain technology has revolutionized conventional trade.The success of blockchain can be attributed to its distributed ledger characteristic,which secures every record inside the ledger using cryptography rules,making it more reliable,secure,and tamper-proof.This is evident by the significant impact that the use of this technology has had on people connected to digital spaces in the present-day context.Furthermore,it has been proven that blockchain technology is evolving from new perspectives and that it provides an effective mechanism for the intelligent transportation system infrastructure.To realize the full potential of the accurate and efficacious use of blockchain in the transportation sector,it is essential to understand the most effective mechanisms of this technology and identify the most useful one.As a result,the present work offers a priority-based methodology that would be a useful reference for security experts in managing blockchain technology and its models.The study uses the hesitant fuzzy analytical hierarchy process for prioritizing the different blockchain models.Based on the findings of actual performance,alternative solution A1 which is Private Blockchain model has an extremely high level of security satisfaction.The accuracy of the results has been tested using the hesitant fuzzy technique for order of preference by similarity to the ideal solution procedure.The study also uses guidelines from security researchers working in this domain.
文摘An intelligent manufacturing system is a composite intelligent system comprising humans,cyber systems,and physical systems with the aim of achieving specific manufacturing goals at an optimized level.This kind of intelligent system is called a human-cyber-physical system(HCPS).In terms of technology,HCPSs can both reveal technological principles and form the technological architecture for intelligent manufacturing.It can be concluded that the essence of intelligent manufacturing is to design,construct,and apply HCPSs in various cases and at different levels.With advances in information technology,intelligent manufacturing has passed through the stages of digital manufacturing and digital-networked manufacturing,and is evolving toward new-generation intelligent manufacturing(NGIM).NGIM is characterized by the in-depth integration of new-generation artificial intelligence(AI)technology(i.e.,enabling technology)with advanced manufacturing technology(i.e.,root technology);it is the core driving force of the new industrial revolution.In this study,the evolutionary footprint of intelligent manufacturing is reviewed from the perspective of HCPSs,and the implications,characteristics,technical frame,and key technologies of HCPSs for NGIM are then discussed in depth.Finally,an outlook of the major challenges of HCPSs for NGIM is proposed.
文摘The approach for probabilistic rationale of artificial intelligence systems actions is proposed.It is based on an implementation of the proposed interconnected ideas 1-7 about system analysis and optimization focused on prognostic modeling.The ideas may be applied also by using another probabilistic models which supported by software tools and can predict successfulness or risks on a level of probability distribution functions.The approach includes description of the proposed probabilistic models,optimization methods for rationale actions and incremental algorithms for solving the problems of supporting decision-making on the base of monitored data and rationale robot actions in uncertainty conditions.The approach means practically a proactive commitment to excellence in uncertainty conditions.A suitability of the proposed models and methods is demonstrated by examples which cover wide applications of artificial intelligence systems.
文摘In allusion to the characteristics of the open complex giant system, an open multilevel hierarchic intelligent control system is established for the eco-industrial system. With the idea of the open engineering system, using the hall for workshop of metasynthetic engineering (HWME), intelligent control techniques, the expert system and the design of experiments are integrated within the framework of the nonlinear multiobjective decision support system to develop a robust, top-level design specification so as to make the system have the quality of adaptive control, self-organizing, self-learning and robustness. Finally, an illustrative example is given to clarify the effectiveness of the method.
基金supported in part by the Department of National Defence’s Innovation for Defence Excellence and Security(IDEa S)Program,Canadathrough the Project of Auto Defence Towards Trustworthy Technologies for Autonomous Human-Machine Systems,NSERCthe IEEE SMC Society Technical Committee on Brain-Inspired Systems(TCBCS)。
文摘Autonomous systems are an emerging AI technology functioning without human intervention underpinned by the latest advances in intelligence,cognition,computer,and systems sciences.This paper explores the intelligent and mathematical foundations of autonomous systems.It focuses on structural and behavioral properties that constitute the intelligent power of autonomous systems.It explains how system intelligence aggregates from reflexive,imperative,adaptive intelligence to autonomous and cognitive intelligence.A hierarchical intelligence model(HIM)is introduced to elaborate the evolution of human and system intelligence as an inductive process.The properties of system autonomy are formally analyzed towards a wide range of applications in computational intelligence and systems engineering.Emerging paradigms of autonomous systems including brain-inspired systems,cognitive robots,and autonomous knowledge learning systems are described.Advances in autonomous systems will pave a way towards highly intelligent machines for augmenting human capabilities.
文摘With the development of automatic design and artificial intelligence techniques, intelligence already have been applied in maintainability design and analysis of military /commercial equipment. Expert system has been used in diagnosis, design analysis, testability design, etc. In this paper, we will discuss about knowledge engineering application in two types. One is integrated knowledge base system for maintainability, it's the baseline of concurrent, intelligence design and it's also suitable for the present situation in China that there is lack of maintainability engineers. The other application is expert system for formulating maintainability design criteria and it can take full advantage of experts' experiences and past cases. Under development trend of intelligence design, these two systems will have good effects on maintainability design and analysis.
文摘The growing number of vehicles makes traffic jams and accidents significant problems. Making people get to know the real-time road condition can mitigate the effect of congestions greatly, but this is not supported by traditional traffic assistant systems. The intelligent traffic system is born to settle these problems. By making full use of the ArcGIS (Arc Geographic Information System) Engine characteristics, this paper designs and imple- ments an urban traffic monitoring system. The main functions of the system include the real-time road condition information display, layer-control, supervisory control management and the basic operations of a map. With the data collected by monitors deployed in intersections, different road conditions are calculated and shown with dif- ferent colors on the map and users can choose suitable roads to get away from the traffic congestion; meanwhile it can offer a reference for a traffic management department to make decisions on traffic control. The system has been deployed and shows high practicability and reliability in practical use.
文摘An intelligent security systems engineering approach is used to analyze fire and explosive critical incidents, a growing concern in urban communities. A feed-forward back-propagation neural network models the damages arising from these critical incidents. The overall goal is to promote fire safety and sustainable security. The intelligent security systems engineering prediction model uses a fully connected multilayer neural network, and considers a number of factors related to the fire or explosive incident including the type of property affected, the time of day, and the ignition source. The network was trained on a large number of critical incident records reported in Toronto, Canada between 2000 and 2006. Our intelligent security systems engineering approach can help emergency responders by improving cr^tical incident analysis, sustainable security, and fire risk management.
文摘为实现BIM(Building Information Modeling)+GIS(Geographic Information System)技术在铁路四电工程建造过程中的应用,提出铁路四电工程智能建造方案。通过构建BIM族库、参数化建模、模型轻量化等技术手段,实现模型快速生成及项目各阶段数据的集成共享;设计BIM+GIS管理平台,将项目管理过程中的生产要素信息、管理要素信息与BIM模型信息、GIS技术深度融合,满足不同管理部门、不同层级用户的三维可视化、数字化、全要素信息建设管理精益化需求,实现铁路四电工程项目的数字化交付。应用表明,该方案可为推动BIM+GIS技术在铁路四电工程的应用发展提供技术支撑。
文摘Based on the full use of historical reservoir dispatching information, artificial intelligence is applied to grid reservoir group dispatching. A knowledge representation method, which combines dispatching rules and intelligence models, is put forward. The intelligent dispatching system is established and the system architecture is presented. Additionally, the acquisition, representation and reasoning mechanism of reservoir dispatching knowledge are designed in detail.