针对化工连续生产过程的时序性及非线性等特征,提出一种新的基于数据驱动的化工过程故障诊断方法:ISOMAP-LDA。首先实行流形学习算法ISOMAP,在保持量测数据几何结构特性下完成非线性降维,然后基于提取的嵌入变量张成的低维空间,选用线...针对化工连续生产过程的时序性及非线性等特征,提出一种新的基于数据驱动的化工过程故障诊断方法:ISOMAP-LDA。首先实行流形学习算法ISOMAP,在保持量测数据几何结构特性下完成非线性降维,然后基于提取的嵌入变量张成的低维空间,选用线性判别分析(LDA)构造故障模式类的判别函数,负责各采样个体故障类型的判定。将该方法用于仿真化工Tennessee East man过程的故障诊断,结果表明,ISOMAP-LDA方法不仅拥有较高的故障诊断能力,而且取得采样在低维空间的可视化表示。展开更多
文摘针对化工连续生产过程的时序性及非线性等特征,提出一种新的基于数据驱动的化工过程故障诊断方法:ISOMAP-LDA。首先实行流形学习算法ISOMAP,在保持量测数据几何结构特性下完成非线性降维,然后基于提取的嵌入变量张成的低维空间,选用线性判别分析(LDA)构造故障模式类的判别函数,负责各采样个体故障类型的判定。将该方法用于仿真化工Tennessee East man过程的故障诊断,结果表明,ISOMAP-LDA方法不仅拥有较高的故障诊断能力,而且取得采样在低维空间的可视化表示。