The ecotourism has quickly developed as the fastest growing industry in recent years. Ecotourism is one kind of tourism industry that also consists of complex service providers like travel agents, hotels, transportati...The ecotourism has quickly developed as the fastest growing industry in recent years. Ecotourism is one kind of tourism industry that also consists of complex service providers like travel agents, hotels, transportations (such as airplane, bus, and ship) restaurants, and destinations, connecting with operational diversity; therefore, those of supported services are linked with a supply chain together, and its management is called ecotourism service supply chain management (ESSCM). Moreover, a low-carbon operation management has also become an important challenge to ecotourism nowadays. Based on the problems of service and low-carbon operation management made together above, exploring an effective solution into ecotourism is worthy. Using ESSCM as a strategy for solving industrial problems of service and low-carbon operations management in ecotourism is explored in this paper. The contributions here include clearly explanations of what ESSCM is and how ESSCM is used with low-carbon operations as a sustainability strategy, and finally a practical case study is also examined in the end.展开更多
With the growing environmental concerns, green supply chain management (GSCM) is gaining significant attention in the construction industry. Tracking and monitoring the environmental effects brought forth by the par...With the growing environmental concerns, green supply chain management (GSCM) is gaining significant attention in the construction industry. Tracking and monitoring the environmental effects brought forth by the participating members along a supply chain is important to GSCM. The GreenSCOR model developed by the Supply Chain Council provides a generic framework for measuring the total carbon footprint and environmental footprint in a supply chain. The model is based on the Supply Chain Operations Reference (SCOR) model, which represents a supply chain network in a hierarchically structured manner. This paper describes the GreenSCOR framework and its potential application to the construction industry. This paper also presents a web services approach to incorporate the GreenSCOR model to the implementation of collaborative information systems. Each process element in the SCOR model is represented and delivered as individual web service units, which can be reused and integrated using standard web services technologies. The service units are combined and managed in a prototype web service collaborative framework, called SC Collaborator, which is designed and developed for supporting construction supply chain management. An illustrative example is presented to demonstrate the implementation of the GreenSCOR-based SC Collaborator framework.展开更多
The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming incr...The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming increasingly automated and autonomous,making it lucrative for AI applications.This paper presents a systematic review of studies that employ AI techniques for improving ATM capability.A brief account of the history,structure,and advantages of these methods is provided,followed by the description of their applications to several representative ATM tasks,such as air traffic services(ATS),airspace management(AM),air traffic flow management(ATFM),and flight operations(FO).The major contribution of the current review is the professional survey of the AI application to ATM alongside with the description of their specific advantages:(i)these methods provide alternative approaches to conventional physical modeling techniques,(ii)these methods do not require knowing relevant internal system parameters,(iii)these methods are computationally more efficient,and(iv)these methods offer compact solutions to multivariable problems.In addition,this review offers a fresh outlook on future research.One is providing a clear rationale for the model type and structure selection for a given ATM mission.Another is to understand what makes a specific architecture or algorithm effective for a given ATM mission.These are among the most important issues that will continue to attract the attention of the AI research community and ATM work teams in the future.展开更多
文摘The ecotourism has quickly developed as the fastest growing industry in recent years. Ecotourism is one kind of tourism industry that also consists of complex service providers like travel agents, hotels, transportations (such as airplane, bus, and ship) restaurants, and destinations, connecting with operational diversity; therefore, those of supported services are linked with a supply chain together, and its management is called ecotourism service supply chain management (ESSCM). Moreover, a low-carbon operation management has also become an important challenge to ecotourism nowadays. Based on the problems of service and low-carbon operation management made together above, exploring an effective solution into ecotourism is worthy. Using ESSCM as a strategy for solving industrial problems of service and low-carbon operations management in ecotourism is explored in this paper. The contributions here include clearly explanations of what ESSCM is and how ESSCM is used with low-carbon operations as a sustainability strategy, and finally a practical case study is also examined in the end.
文摘With the growing environmental concerns, green supply chain management (GSCM) is gaining significant attention in the construction industry. Tracking and monitoring the environmental effects brought forth by the participating members along a supply chain is important to GSCM. The GreenSCOR model developed by the Supply Chain Council provides a generic framework for measuring the total carbon footprint and environmental footprint in a supply chain. The model is based on the Supply Chain Operations Reference (SCOR) model, which represents a supply chain network in a hierarchically structured manner. This paper describes the GreenSCOR framework and its potential application to the construction industry. This paper also presents a web services approach to incorporate the GreenSCOR model to the implementation of collaborative information systems. Each process element in the SCOR model is represented and delivered as individual web service units, which can be reused and integrated using standard web services technologies. The service units are combined and managed in a prototype web service collaborative framework, called SC Collaborator, which is designed and developed for supporting construction supply chain management. An illustrative example is presented to demonstrate the implementation of the GreenSCOR-based SC Collaborator framework.
基金supported by the National Natural Science Foundation of China(62073330)the Natural Science Foundation of Hunan Province(2020JJ4339)the Scientific Research Fund of Hunan Province Education Department(20B272).
文摘The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming increasingly automated and autonomous,making it lucrative for AI applications.This paper presents a systematic review of studies that employ AI techniques for improving ATM capability.A brief account of the history,structure,and advantages of these methods is provided,followed by the description of their applications to several representative ATM tasks,such as air traffic services(ATS),airspace management(AM),air traffic flow management(ATFM),and flight operations(FO).The major contribution of the current review is the professional survey of the AI application to ATM alongside with the description of their specific advantages:(i)these methods provide alternative approaches to conventional physical modeling techniques,(ii)these methods do not require knowing relevant internal system parameters,(iii)these methods are computationally more efficient,and(iv)these methods offer compact solutions to multivariable problems.In addition,this review offers a fresh outlook on future research.One is providing a clear rationale for the model type and structure selection for a given ATM mission.Another is to understand what makes a specific architecture or algorithm effective for a given ATM mission.These are among the most important issues that will continue to attract the attention of the AI research community and ATM work teams in the future.