A series of phosphorus-modified PITQ-13 catalysts was prepared by wet impregnation of NH4H2PO4 solution into an HITQ-13 parent. The catalysts were characterized using XRD, N2 adsorption, MAS NMR and NH3-TPD. Their cat...A series of phosphorus-modified PITQ-13 catalysts was prepared by wet impregnation of NH4H2PO4 solution into an HITQ-13 parent. The catalysts were characterized using XRD, N2 adsorption, MAS NMR and NH3-TPD. Their catalytic performance in 1-butene catalytic cracking was evaluated in a fixed fluidized bed reactor. The results showed that the crystallinity, surface area and pore volume of P-modified PITQ-13 catalysts decreased with the increasing amounts of P. The number of weak acid sites increased, whereas that of strong acidity decreased. The selectivity to propylene in 1-butene cracking reactions increased because of the decrease in strong acidity. The yield of propylene achieved 41.6% over PITQ-13-2 catalyst with a P content of 1.0 wt%, which was 5.1% greater than that achieved over HITQ-13 catalyst.展开更多
Five humic fractions were obtained from a uniformly 15N-labelled soil by extraction with 0.1 mol L-1 Na4P207, 0.1 mol L-1 NaOH, and HF/HCI-0.1 mol L-1 NaOH, consecutively, and analyzed by 13C and 15N CPMAS NMR (cross ...Five humic fractions were obtained from a uniformly 15N-labelled soil by extraction with 0.1 mol L-1 Na4P207, 0.1 mol L-1 NaOH, and HF/HCI-0.1 mol L-1 NaOH, consecutively, and analyzed by 13C and 15N CPMAS NMR (cross polarization and magic angle spinning nuclear magnetic resonance). Compared with those of native soils humic fractions studied as a whole contained more alkyls, methoxyls and O-alkyls, being 27%-36%, 17%-21% and 36%-40%, respectively, but fewer aromatics and carboxyls (being 14%-20% and 13%-90%, respectively). Among those humic fractions, the humic acid (HA) and fulvic acid (FA) extracted by 0.1 mol L-1 Na4P207 contained slightly more carboxyls than corresponding humic fractions extracted by 0.1 mol L-1 NaOH, and the HA extracted by 0.1 mol L-1 NaOH after treatment with HF/HCI contained the least aromatics and carboxyls. The distribution of nitrogen functional groups of soil humic fractions studied was quite similar to each other and also quite similar to that of humic fraction from native soils. More than 75% of total N in each fraction was in amide form, with 9%-13% present as aromatic and/or aliphatic amines and the remainder as hoterocyclic N.展开更多
Aromatic hydrocarbons are generally main distillation of crude oil and organic extract of source rocks. Bicyclic and tricyclic aromatic hydrocarbons can be purified by two-step method of chromatography on alumina. Car...Aromatic hydrocarbons are generally main distillation of crude oil and organic extract of source rocks. Bicyclic and tricyclic aromatic hydrocarbons can be purified by two-step method of chromatography on alumina. Carbon isotopic composition of in- dividual aromatic hydrocarbons is affected not only by thermal maturity, but also by organic matter input, depositional envi- ronment, and hydrocarbon generation process based on the GC-IRMS analysis of Upper Ordovician, Lower Ordovician, and Cambrian source rocks in different areas in the Tarim Basin, western China. The subgroups of aromatic hydrocarbons as well as individual aromatic compound, such as 1-MP, 9-MP, and 2,6-DMP from Cambrian-Lower Ordovician section show more depleted 13C distribution. The δ13C value difference between Cambrian-Lower Ordovician section and Upper Ordovician source rocks is up to 16.1%o for subgroups and 14%o for individual compounds. It can provide strong evidence for oil source correlation by combing the δ13C value and biomarker distribution of different oil and source rocks from different strata in the Tarim Basin. Most oils from Tazhong area have geochemical characteristics such as more negative δI3Cg_Mp value, poor gam macerane, and abundant homohopanes, which indicate that Upper Ordovician source rock is the main source rock. In contrast, oils from Tadong area and some oils from Tazhong area have geochemical characteristics such as high 613C9-MP, value, abun dant gammacerane, and poor homohopanes, which suggest that the major contributor is Cambrian-Lower Ordovician source rock.展开更多
Application of high resolution^(13)C nuclear magnetic resonance(NMR)spectroscopy to characterize Cuba oil and oil-containing rock samples from Cuban basin was demonstrated.The chemical shifts of^(13)C NMR functional g...Application of high resolution^(13)C nuclear magnetic resonance(NMR)spectroscopy to characterize Cuba oil and oil-containing rock samples from Cuban basin was demonstrated.The chemical shifts of^(13)C NMR functional groups for later determination the composition of the oil and rock samples were determined.The different contribution of the studied samples in the aliphatic and aromatic areas was determined.Molar fractions of primary,secondary,quaternary,tertiary,aromatic groups,aromaticity factor and the mean length of hydrocarbon chain length of aliphatic hydrocarbons were estimated.Comparative analysis on the quantitative level for all major hydrocarbon components,the aromaticity factor and the mean length of the hydrocarbon chain were carried out.展开更多
Application of high resolution^(13)C nuclear magnetic resonance(NMR)spectroscopy to characterize crude oil was demonstrated.The chemical shifts of^(13)C NMR functional groups that determine the composition of the oil ...Application of high resolution^(13)C nuclear magnetic resonance(NMR)spectroscopy to characterize crude oil was demonstrated.The chemical shifts of^(13)C NMR functional groups that determine the composition of the oil sample were determined.Molar fractions of primary,secondary,quaternary,tertiary,aromatic groups,aromatic factor and average hydrocarbon chain length of aliphatic hydrocarbons of the oil sample according to^(13)C NMR spectra were determined.Detailed description of the^(13)C NMR spectra of the oil sample using a single consideration of three NMR spectra:^(13)C,^(13)C Attached Proton Test(APT),^(13)C with Gated Decoupling(GD)was performed.The different contribution of the studied oil sample in the aliphatic(10e75 ppm)and aromatic(115e165 ppm)areas of the^(13)C NMR spectra was determined.The presence of all major hydrocarbon components in the studied oil sample was established on the quantitative level,the aromaticity factor and the mean length of the hydrocarbon chain were evaluated.Quantitative fractions of aromatic molecules and functional groups constituting oil hydrocarbons were determined.In this work we demonstrate that the attached proton test and gated decoupling^(13)C NMR spectroscopy can afford all information to complete the chemical shift assignment of an oil sample,especially for determination of long range 1He^(13)C coupling constants and^(13)C multiplicity.展开更多
基金supported by PetroChina Company Limited(12-09-01-01)the National Basic Research Program of China(973 Program,2012CB215001)
文摘A series of phosphorus-modified PITQ-13 catalysts was prepared by wet impregnation of NH4H2PO4 solution into an HITQ-13 parent. The catalysts were characterized using XRD, N2 adsorption, MAS NMR and NH3-TPD. Their catalytic performance in 1-butene catalytic cracking was evaluated in a fixed fluidized bed reactor. The results showed that the crystallinity, surface area and pore volume of P-modified PITQ-13 catalysts decreased with the increasing amounts of P. The number of weak acid sites increased, whereas that of strong acidity decreased. The selectivity to propylene in 1-butene cracking reactions increased because of the decrease in strong acidity. The yield of propylene achieved 41.6% over PITQ-13-2 catalyst with a P content of 1.0 wt%, which was 5.1% greater than that achieved over HITQ-13 catalyst.
基金Project (No. 39790100) supported by the National Natural Science Foundation of China.
文摘Five humic fractions were obtained from a uniformly 15N-labelled soil by extraction with 0.1 mol L-1 Na4P207, 0.1 mol L-1 NaOH, and HF/HCI-0.1 mol L-1 NaOH, consecutively, and analyzed by 13C and 15N CPMAS NMR (cross polarization and magic angle spinning nuclear magnetic resonance). Compared with those of native soils humic fractions studied as a whole contained more alkyls, methoxyls and O-alkyls, being 27%-36%, 17%-21% and 36%-40%, respectively, but fewer aromatics and carboxyls (being 14%-20% and 13%-90%, respectively). Among those humic fractions, the humic acid (HA) and fulvic acid (FA) extracted by 0.1 mol L-1 Na4P207 contained slightly more carboxyls than corresponding humic fractions extracted by 0.1 mol L-1 NaOH, and the HA extracted by 0.1 mol L-1 NaOH after treatment with HF/HCI contained the least aromatics and carboxyls. The distribution of nitrogen functional groups of soil humic fractions studied was quite similar to each other and also quite similar to that of humic fraction from native soils. More than 75% of total N in each fraction was in amide form, with 9%-13% present as aromatic and/or aliphatic amines and the remainder as hoterocyclic N.
文摘通过设计首次提出针对ITQ-13分子筛晶化促进剂的合成策略,ITQ-13分子筛.通过X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、N2吸附、原位红外(FTIR)及固体核磁(27Al NMR)等测试手段对ITQ-13分子筛的物化性能进行了表征,考察了晶化过程中结晶度的变化,得出了晶化过程的动力学参数,对晶化机理进行了探讨.结果表明:快速合成法与传统方法合成的ITQ-13分子筛具有相似的物化性能,并且可以合成含有更多骨架铝的ITQ-13分子筛;NO3-的加入通过极化憎水基团,加速SiOSi物质结合,降低ITQ-13分子筛的成核活化能以及生长活化能,从而可以提高晶化速率,缩短晶化时间至11 h.
基金supported by National Natural Science Foundation of China(Grant No.40973041)College Fund for the Doctoral Project(Grant No.20104220110001)Natural Science Foundation of Hubei Province(Grant No.2009CDB205)
文摘Aromatic hydrocarbons are generally main distillation of crude oil and organic extract of source rocks. Bicyclic and tricyclic aromatic hydrocarbons can be purified by two-step method of chromatography on alumina. Carbon isotopic composition of in- dividual aromatic hydrocarbons is affected not only by thermal maturity, but also by organic matter input, depositional envi- ronment, and hydrocarbon generation process based on the GC-IRMS analysis of Upper Ordovician, Lower Ordovician, and Cambrian source rocks in different areas in the Tarim Basin, western China. The subgroups of aromatic hydrocarbons as well as individual aromatic compound, such as 1-MP, 9-MP, and 2,6-DMP from Cambrian-Lower Ordovician section show more depleted 13C distribution. The δ13C value difference between Cambrian-Lower Ordovician section and Upper Ordovician source rocks is up to 16.1%o for subgroups and 14%o for individual compounds. It can provide strong evidence for oil source correlation by combing the δ13C value and biomarker distribution of different oil and source rocks from different strata in the Tarim Basin. Most oils from Tazhong area have geochemical characteristics such as more negative δI3Cg_Mp value, poor gam macerane, and abundant homohopanes, which indicate that Upper Ordovician source rock is the main source rock. In contrast, oils from Tadong area and some oils from Tazhong area have geochemical characteristics such as high 613C9-MP, value, abun dant gammacerane, and poor homohopanes, which suggest that the major contributor is Cambrian-Lower Ordovician source rock.
基金supported by the Ministry of Science and Higher Education of the Russian Federation under agreement No.075-15-2020-931 within the framework of the development program for a world-class Research Center“Efficient development of the global liquid hydrocarbon reserves.”。
文摘Application of high resolution^(13)C nuclear magnetic resonance(NMR)spectroscopy to characterize Cuba oil and oil-containing rock samples from Cuban basin was demonstrated.The chemical shifts of^(13)C NMR functional groups for later determination the composition of the oil and rock samples were determined.The different contribution of the studied samples in the aliphatic and aromatic areas was determined.Molar fractions of primary,secondary,quaternary,tertiary,aromatic groups,aromaticity factor and the mean length of hydrocarbon chain length of aliphatic hydrocarbons were estimated.Comparative analysis on the quantitative level for all major hydrocarbon components,the aromaticity factor and the mean length of the hydrocarbon chain were carried out.
基金the Ministry of Science and Higher Education of the Russian Federation under agreement No.075-15-2020-931 within the framework of the development program for a world-class Research Center"Efficient development of the global liquid hydrocarbon reserves.".
文摘Application of high resolution^(13)C nuclear magnetic resonance(NMR)spectroscopy to characterize crude oil was demonstrated.The chemical shifts of^(13)C NMR functional groups that determine the composition of the oil sample were determined.Molar fractions of primary,secondary,quaternary,tertiary,aromatic groups,aromatic factor and average hydrocarbon chain length of aliphatic hydrocarbons of the oil sample according to^(13)C NMR spectra were determined.Detailed description of the^(13)C NMR spectra of the oil sample using a single consideration of three NMR spectra:^(13)C,^(13)C Attached Proton Test(APT),^(13)C with Gated Decoupling(GD)was performed.The different contribution of the studied oil sample in the aliphatic(10e75 ppm)and aromatic(115e165 ppm)areas of the^(13)C NMR spectra was determined.The presence of all major hydrocarbon components in the studied oil sample was established on the quantitative level,the aromaticity factor and the mean length of the hydrocarbon chain were evaluated.Quantitative fractions of aromatic molecules and functional groups constituting oil hydrocarbons were determined.In this work we demonstrate that the attached proton test and gated decoupling^(13)C NMR spectroscopy can afford all information to complete the chemical shift assignment of an oil sample,especially for determination of long range 1He^(13)C coupling constants and^(13)C multiplicity.