Sugar spray coating is a frequently used process in the pharmaceutical industry. However, this process presents the disadvantage to form an amorphous coating around the active ingredient. A crystalline coating formed ...Sugar spray coating is a frequently used process in the pharmaceutical industry. However, this process presents the disadvantage to form an amorphous coating around the active ingredient. A crystalline coating formed on the surface of a tablet is highly desirable. Recently, a new process of coating by cooling crystallization has been developed and applied on bisacodyl pastilles obtained by melt crystallization. In this work, we investigated the feasibility of coating by cooling crystallization on ibuprofen "naked tablets" manufactured by compression. In the first part of this work, the solubility and the metastable zone width have been determined experimentally for the coating solution because they are essential factors for any crystallization process. In the second part, the coating process is investigated on the operating conditions that affect the surface morphology and the crystal growth rate. These experimental conditions include concentration of the coating solution, degree of sub-cooling, agitation speed, retention time, and surface properties of the naked ibuprofen tablets. The results show that naked tablet coating by cooling crystallization is feasible and can be applied in the pharmaceutical industry.展开更多
文摘Sugar spray coating is a frequently used process in the pharmaceutical industry. However, this process presents the disadvantage to form an amorphous coating around the active ingredient. A crystalline coating formed on the surface of a tablet is highly desirable. Recently, a new process of coating by cooling crystallization has been developed and applied on bisacodyl pastilles obtained by melt crystallization. In this work, we investigated the feasibility of coating by cooling crystallization on ibuprofen "naked tablets" manufactured by compression. In the first part of this work, the solubility and the metastable zone width have been determined experimentally for the coating solution because they are essential factors for any crystallization process. In the second part, the coating process is investigated on the operating conditions that affect the surface morphology and the crystal growth rate. These experimental conditions include concentration of the coating solution, degree of sub-cooling, agitation speed, retention time, and surface properties of the naked ibuprofen tablets. The results show that naked tablet coating by cooling crystallization is feasible and can be applied in the pharmaceutical industry.