The exchange rings without unity, first introduced by Ara, are further investigated. Some new characterizations and properties of exchange general rings are given. For example, a general ring I is exchange if and only...The exchange rings without unity, first introduced by Ara, are further investigated. Some new characterizations and properties of exchange general rings are given. For example, a general ring I is exchange if and only if for any left ideal L of I and a^-= a^-2 ∈I/L, there exists w ∈ r. ureg(I) such that w^- = a^-; E(R, I) ( the ideal extension of a ring R by its ideal I) is an exchange ring if and only if R and I are both exchange. Furthermore, it is presented that if I is a two-sided ideal of a unital ring R and I is an exchange general ring, then every central element of I is a clean element in 1.展开更多
基金The National Natural Science Foundation of China(No10571026),the Natural Science Foundation of Jiangsu Province(NoBK2005207), the Teaching and Research Award Program for Out-standing Young Teachers in Higher Education Institutions of MOE,PRC
文摘The exchange rings without unity, first introduced by Ara, are further investigated. Some new characterizations and properties of exchange general rings are given. For example, a general ring I is exchange if and only if for any left ideal L of I and a^-= a^-2 ∈I/L, there exists w ∈ r. ureg(I) such that w^- = a^-; E(R, I) ( the ideal extension of a ring R by its ideal I) is an exchange ring if and only if R and I are both exchange. Furthermore, it is presented that if I is a two-sided ideal of a unital ring R and I is an exchange general ring, then every central element of I is a clean element in 1.