Ship type identification is an important part of electronic reconnaissance. However, in the existing methods, such as statistical-based methods and fuzzy-mathematics-based methods, the information acquired by the pass...Ship type identification is an important part of electronic reconnaissance. However, in the existing methods, such as statistical-based methods and fuzzy-mathematics-based methods, the information acquired by the passive sensor is not fully utilized, and there is a certain ambiguity in the assignment relationship of the emitters-ship. They can’t conclude the accurate and reliable assignment relationship of the emitters-ship. Therefore, this paper proposes a comprehensive correlation discriminant method to obtain a more reliable and comprehensive emitters-ship assignment, and then uses information entropy method to identify the type of the target ship on the basis of this association and assign the credibility. The simulation results show that this algorithm can effectively solve the problem of target ship type identification using the information of multi-passive sensors.展开更多
Based on measured natural frequencies and acceleration responses,a non-probabilistic information fusion technique is proposed for the structural damage detection by adopting the set-membership identification(SMI) an...Based on measured natural frequencies and acceleration responses,a non-probabilistic information fusion technique is proposed for the structural damage detection by adopting the set-membership identification(SMI) and twostep model updating procedure.Due to the insufficiency and uncertainty of information obtained from measurements,the uncertain problem of damage identification is addressed with interval variables in this paper.Based on the first-order Taylor series expansion,the interval bounds of the elemental stiffness parameters in undamaged and damaged models are estimated,respectively.The possibility of damage existence(PoDE) in elements is proposed as the quantitative measure of structural damage probability,which is more reasonable in the condition of insufficient measurement data.In comparison with the identification method based on a single kind of information,the SMI method will improve the accuracy in damage identification,which reflects the information fusion concept based on the non-probabilistic set.A numerical example is performed to demonstrate the feasibility and effectiveness of the proposed technique.展开更多
In order to ensure the service security of space structures under wind load, the stress identification method based on the combination of fuzzy pattern recognition and information fusion technique is proposed, in whic...In order to ensure the service security of space structures under wind load, the stress identification method based on the combination of fuzzy pattern recognition and information fusion technique is proposed, in which the measurements of limited strain sensors arranged on the structure are used. Firstly, the structure is divided into several regions according to the similarity and the most unfavorable region is selected to be the key region for stress identification, while the different numbers of the strain sensors are located on the key region and the normal regions; secondly, the different stress distributions of the key region are obtained based on the measurements of the strain sensors located on the key region and the normal regions separately, in which the fuzzy pattern recognition is used to identify the different stress distributions; thirdly, the stress distributions obtained by the measurements of sensors in normal regions are selected to calculate the synthesized stress distribution of the key region by D-S evidence theory; fourthly, the weighted fusion algorithm is used to assign the different fusion coefficients to the selected stress distributions obtained by the measurements of the normal regions and the key region, while the synthesized stress distribution of the key region can be obtained. Numerical study on a lattice shell model is carried out to validate the reliability of the proposed stress identification method. The simulated results indicate that the method can improve identification accuracy and be effective by different noise disturbing.展开更多
In this paper,according to the defect of methods which have low identification rate in low SNR,a new individual identification method of radiation source based on information entropy feature and SVM is presented. Firs...In this paper,according to the defect of methods which have low identification rate in low SNR,a new individual identification method of radiation source based on information entropy feature and SVM is presented. Firstly,based on the theory of multi-resolution wavelet analysis,the wavelet power spectrum of noncooperative signal can be gotten. Secondly,according to the information entropy theory,the wavelet power spectrum entropy is defined in this paper. Therefore,the database of signal's wavelet power spectrum entropy can be built in different SNR and signal parameters. Finally,the sorting and identification model based on SVM is built for the individual identification of radiation source signal. The simulation result indicates that this method has a high individual's identification rate in low SNR,when the SNR is greater than 4 dB,the identification rate can reach 100%. Under unstable SNR conditions,when the range of SNR is between 0 dB and 24 dB,the average identification rate is more than 92. 67%. Therefore,this method has a great application value in the complex electromagnetic environment.展开更多
Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when ...Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data.展开更多
Roads are one of the most important infrastructures in any country. One problem on road based transportation networks is accident. Current methods to identify of high potential segments of roads for accidents are base...Roads are one of the most important infrastructures in any country. One problem on road based transportation networks is accident. Current methods to identify of high potential segments of roads for accidents are based on statistical approaches that need statistical data of accident occurrences over an extended period of time so this cannot be applied to newly-built roads. In this research a new approach for road hazardous segment identification (RHSI) is introduced using Geospatial Information System (GIS) and fuzzy reasoning. In this research among all factors that usually play critical roles in the occurrence of traffic accidents, environmental factors and roadway design are considered. Using incomplete data the consideration of uncertainty is herein investigated using fuzzy reasoning. This method is performed in part of Iran's transit roads (Kohin-Loshan) for less expensive means of analyzing the risks and road safety in Iran. Comparing the results of this approach with existing statistical methods shows advantages when data are uncertain and incomplete, specially for recently built transportation roadways where statistical data are limited. Results show in some instances accident locations are somewhat displaced from the segments of highest risk and in few sites hazardous segments are not determined using traditional statistical methods.展开更多
Coupling Bayes’Theorem with a two-dimensional(2D)groundwater solute advection-diffusion transport equation allows an inverse model to be established to identify a set of contamination source parameters including sour...Coupling Bayes’Theorem with a two-dimensional(2D)groundwater solute advection-diffusion transport equation allows an inverse model to be established to identify a set of contamination source parameters including source intensity(M),release location(0 X,0 Y)and release time(0 T),based on monitoring well data.To address the issues of insufficient monitoring wells or weak correlation between monitoring data and model parameters,a monitoring well design optimization approach was developed based on the Bayesian formula and information entropy.To demonstrate how the model works,an exemplar problem with an instantaneous release of a contaminant in a confined groundwater aquifer was employed.The information entropy of the model parameters posterior distribution was used as a criterion to evaluate the monitoring data quantity index.The optimal monitoring well position and monitoring frequency were solved by the two-step Monte Carlo method and differential evolution algorithm given a known well monitoring locations and monitoring events.Based on the optimized monitoring well position and sampling frequency,the contamination source was identified by an improved Metropolis algorithm using the Latin hypercube sampling approach.The case study results show that the following parameters were obtained:1)the optimal monitoring well position(D)is at(445,200);and 2)the optimal monitoring frequency(Δt)is 7,providing that the monitoring events is set as 5 times.Employing the optimized monitoring well position and frequency,the mean errors of inverse modeling results in source parameters(M,X0,Y0,T0)were 9.20%,0.25%,0.0061%,and 0.33%,respectively.The optimized monitoring well position and sampling frequency canIt was also learnt that the improved Metropolis-Hastings algorithm(a Markov chain Monte Carlo method)can make the inverse modeling result independent of the initial sampling points and achieves an overall optimization,which significantly improved the accuracy and numerical stability of the inverse modeling results.展开更多
Material identification is a technology that can help to identify the type of target material.Existing approaches depend on expensive instruments,complicated pre-treatments and professional users.It is difficult to fi...Material identification is a technology that can help to identify the type of target material.Existing approaches depend on expensive instruments,complicated pre-treatments and professional users.It is difficult to find a substantial yet effective material identification method to meet the daily use demands.In this paper,we introduce a Wi-Fi-signal based material identification approach by measuring the amplitude ratio and phase difference as the key features in the material classifier,which can significantly reduce the cost and guarantee a high level accuracy.In practical measurement of WiFi based material identification,these two features are commonly interrupted by the software/hardware noise of the channel state information(CSI).To eliminate the inherent noise of CSI,we design a denoising method based on the antenna array of the commercial off-the-shelf(COTS)Wi-Fi device.After that,the amplitude ratios and phase differences can be more stably utilized to classify the materials.We implement our system and evaluate its ability to identify materials in indoor environment.The result shows that our system can identify 10 commonly seen liquids with an average accuracy of 98.8%.It can also identify similar liquids with an overall accuracy higher than 95%,such as various concentrations of salt water.展开更多
There is still an obstacle to prevent neural network from wider and more effective applications, i.e., the lack of effective theories of models identification. Based on information theory and its generalization, this ...There is still an obstacle to prevent neural network from wider and more effective applications, i.e., the lack of effective theories of models identification. Based on information theory and its generalization, this paper introduces a universal method to achieve nonlinear models identification. Two key quantities, which are called nonlinear irreducible auto-correlation (NIAC) and generalized nonlinear irreducible auto-correlation (GNIAC), are defined and discussed. NIAC and GNIAC correspond with intrinstic irreducible auto-(dependency) (IAD) and generalized irreducible auto-(dependency) (GIAD) of time series respectively. By investigating the evolving trend of NIAC and GNIAC, the optimal auto-regressive order of nonlinear auto-regressive models could be determined naturally. Subsequently, an efficient algorithm computing NIAC and GNIAC is discussed. Experiments on simulating data sets and typical nonlinear prediction models indicate remarkable correlation between optimal auto-regressive order and the highest order that NIAC-GNIAC have a remarkable non-zero value, therefore demonstrate the validity of the proposal in this paper.展开更多
This study proposesan over all framework for applying wireless manufacturing(WM)technologies in a smart factory and establishes a smart factory data computing and information using system (dc-IUS). Several plug-and-pl...This study proposesan over all framework for applying wireless manufacturing(WM)technologies in a smart factory and establishes a smart factory data computing and information using system (dc-IUS). Several plug-and-play (PnP) application modules of the dc-IUS are presented in the fields of machining process and quality control,material flow and inventory control,and factory resource tracking. Different schemes are discussed about how and where to apply these functions. Then some running examples are studied to demonstrate the feasibility and reliability of dc-IUS. At last,the challenges of applying WM are discussed and a conclusion is given.展开更多
Road geometric design data are a vital input for diverse transportation studies. This information is usually obtained from the road design project. However, these are not always available and the as-built course of th...Road geometric design data are a vital input for diverse transportation studies. This information is usually obtained from the road design project. However, these are not always available and the as-built course of the road may diverge considerably from its projected one, rendering subsequent studies inaccurate or impossible. Moreover, the systematic acquisition of this data for the entire road network of a country or even a state represents a very challenging and laborious task. This study's goal was the extraction of geometric design data for the paved segments of the Brazilian federal highway network, containing more than 47,000 km of highways. It presents the details of the method's adoption process, the particularities of its application to the dataset and the obtained geometric design information. Additionally, it provides a first overview of the Brazilian federal highway network composition (curves and tangents) and geometry.展开更多
Purpose: The aim of this paper is to discuss how the keyword concentration change ratio(KCCR) is used while identifying the stability-mutation feature of Web search keywords during information analyses and predictions...Purpose: The aim of this paper is to discuss how the keyword concentration change ratio(KCCR) is used while identifying the stability-mutation feature of Web search keywords during information analyses and predictions.Design/methodology/approach: By introducing the stability-mutation feature of keywords and its significance, the paper describes the function of the KCCR in identifying keyword stability-mutation features. By using Ginsberg's influenza keywords, the paper shows how the KCCR can be used to identify the keyword stability-mutation feature effectively.Findings: Keyword concentration ratio has close positive correlation with the change rate of research objects retrieved by users, so from the characteristic of the 'stability-mutation' of keywords, we can understand the relationship between these keywords and certain information. In general, keywords representing for mutation fit for the objects changing in short-term, while those representing for stability are suitable for long-term changing objects. Research limitations: It is difficult to acquire the frequency of keywords, so indexes or parameters which are closely related to the true search volume are chosen for this study.Practical implications: The stability-mutation feature identification of Web search keywords can be applied to predict and analyze the information of unknown public events through observing trends of keyword concentration ratio.Originality/value: The stability-mutation feature of Web search could be quantitatively described by the keyword concentration change ratio(KCCR). Through KCCR, the authors took advantage of Ginsberg's influenza epidemic data accordingly and demonstrated how accurate and effective the method proposed in this paper was while it was used in information analyses and predictions.展开更多
针对无人机场景下行人重识别所呈现的多视角多尺度特点,以及传统的基于卷积神经网络的行人重识别算法受限于局部感受野结构和下采样操作,很难对行人图像的全局特征进行提取且图像空间特征分辨率不高。提出一种无人机场景下基于Transfor...针对无人机场景下行人重识别所呈现的多视角多尺度特点,以及传统的基于卷积神经网络的行人重识别算法受限于局部感受野结构和下采样操作,很难对行人图像的全局特征进行提取且图像空间特征分辨率不高。提出一种无人机场景下基于Transformer的轻量化行人重识别(Lightweight Transformer-based Person Re-Identification,LTReID)算法,利用多头多注意力机制从全局角度提取人体不同部分特征,使用Circle损失和边界样本挖掘损失,以提高图像特征提取和细粒度图像检索性能,并利用快速掩码搜索剪枝算法对Transformer模型进行训练后轻量化,以提高模型的无人机平台部署能力。更进一步,提出一种可学习的面向无人机场景的空间信息嵌入,在训练过程中通过学习获得优化的非视觉信息,以提取无人机多视角下行人的不变特征,提升行人特征识别的鲁棒性。最后,在实际的无人机行人重识别数据库中,讨论了在不同量级主干网和不同剪枝率情况下所提LTReID算法的行人重识别性能,并与多种行人重识别算法进行了性能对比,结果表明了所提算法的有效性和优越性。展开更多
文摘Ship type identification is an important part of electronic reconnaissance. However, in the existing methods, such as statistical-based methods and fuzzy-mathematics-based methods, the information acquired by the passive sensor is not fully utilized, and there is a certain ambiguity in the assignment relationship of the emitters-ship. They can’t conclude the accurate and reliable assignment relationship of the emitters-ship. Therefore, this paper proposes a comprehensive correlation discriminant method to obtain a more reliable and comprehensive emitters-ship assignment, and then uses information entropy method to identify the type of the target ship on the basis of this association and assign the credibility. The simulation results show that this algorithm can effectively solve the problem of target ship type identification using the information of multi-passive sensors.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education (20091102120023)the Aeronautical Science Foundation of China (2012ZA51010)+1 种基金the National Natural Science Foundation of China (11002013)Defense Industrial Technology Development Program (A2120110001 and B2120110011)
文摘Based on measured natural frequencies and acceleration responses,a non-probabilistic information fusion technique is proposed for the structural damage detection by adopting the set-membership identification(SMI) and twostep model updating procedure.Due to the insufficiency and uncertainty of information obtained from measurements,the uncertain problem of damage identification is addressed with interval variables in this paper.Based on the first-order Taylor series expansion,the interval bounds of the elemental stiffness parameters in undamaged and damaged models are estimated,respectively.The possibility of damage existence(PoDE) in elements is proposed as the quantitative measure of structural damage probability,which is more reasonable in the condition of insufficient measurement data.In comparison with the identification method based on a single kind of information,the SMI method will improve the accuracy in damage identification,which reflects the information fusion concept based on the non-probabilistic set.A numerical example is performed to demonstrate the feasibility and effectiveness of the proposed technique.
文摘In order to ensure the service security of space structures under wind load, the stress identification method based on the combination of fuzzy pattern recognition and information fusion technique is proposed, in which the measurements of limited strain sensors arranged on the structure are used. Firstly, the structure is divided into several regions according to the similarity and the most unfavorable region is selected to be the key region for stress identification, while the different numbers of the strain sensors are located on the key region and the normal regions; secondly, the different stress distributions of the key region are obtained based on the measurements of the strain sensors located on the key region and the normal regions separately, in which the fuzzy pattern recognition is used to identify the different stress distributions; thirdly, the stress distributions obtained by the measurements of sensors in normal regions are selected to calculate the synthesized stress distribution of the key region by D-S evidence theory; fourthly, the weighted fusion algorithm is used to assign the different fusion coefficients to the selected stress distributions obtained by the measurements of the normal regions and the key region, while the synthesized stress distribution of the key region can be obtained. Numerical study on a lattice shell model is carried out to validate the reliability of the proposed stress identification method. The simulated results indicate that the method can improve identification accuracy and be effective by different noise disturbing.
基金Sponsored by the Nation Nature Science Foundation of China(Grant No.61201237,61301095)the Nature Science Foundation of Heilongjiang Province of China(Grant No.QC2012C069)the Fundamental Research Funds for the Central Universities(Grant No.HEUCFZ1129,HEUCF130817,HEUCF130810)
文摘In this paper,according to the defect of methods which have low identification rate in low SNR,a new individual identification method of radiation source based on information entropy feature and SVM is presented. Firstly,based on the theory of multi-resolution wavelet analysis,the wavelet power spectrum of noncooperative signal can be gotten. Secondly,according to the information entropy theory,the wavelet power spectrum entropy is defined in this paper. Therefore,the database of signal's wavelet power spectrum entropy can be built in different SNR and signal parameters. Finally,the sorting and identification model based on SVM is built for the individual identification of radiation source signal. The simulation result indicates that this method has a high individual's identification rate in low SNR,when the SNR is greater than 4 dB,the identification rate can reach 100%. Under unstable SNR conditions,when the range of SNR is between 0 dB and 24 dB,the average identification rate is more than 92. 67%. Therefore,this method has a great application value in the complex electromagnetic environment.
基金supported by the National Nature Science Foundation of China(Grant No.71401052)the National Social Science Foundation of China(Grant No.17BGL156)the Key Project of the National Social Science Foundation of China(Grant No.14AZD024)
文摘Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data.
文摘Roads are one of the most important infrastructures in any country. One problem on road based transportation networks is accident. Current methods to identify of high potential segments of roads for accidents are based on statistical approaches that need statistical data of accident occurrences over an extended period of time so this cannot be applied to newly-built roads. In this research a new approach for road hazardous segment identification (RHSI) is introduced using Geospatial Information System (GIS) and fuzzy reasoning. In this research among all factors that usually play critical roles in the occurrence of traffic accidents, environmental factors and roadway design are considered. Using incomplete data the consideration of uncertainty is herein investigated using fuzzy reasoning. This method is performed in part of Iran's transit roads (Kohin-Loshan) for less expensive means of analyzing the risks and road safety in Iran. Comparing the results of this approach with existing statistical methods shows advantages when data are uncertain and incomplete, specially for recently built transportation roadways where statistical data are limited. Results show in some instances accident locations are somewhat displaced from the segments of highest risk and in few sites hazardous segments are not determined using traditional statistical methods.
基金This work was supported by Major Science and Technology Program for Water Pollution Control and Treatment(No.2015ZX07406005)Also thanks to the National Natural Science Foundation of China(No.41430643 and No.51774270)the National Key Research&Development Plan(No.2016YFC0501109).
文摘Coupling Bayes’Theorem with a two-dimensional(2D)groundwater solute advection-diffusion transport equation allows an inverse model to be established to identify a set of contamination source parameters including source intensity(M),release location(0 X,0 Y)and release time(0 T),based on monitoring well data.To address the issues of insufficient monitoring wells or weak correlation between monitoring data and model parameters,a monitoring well design optimization approach was developed based on the Bayesian formula and information entropy.To demonstrate how the model works,an exemplar problem with an instantaneous release of a contaminant in a confined groundwater aquifer was employed.The information entropy of the model parameters posterior distribution was used as a criterion to evaluate the monitoring data quantity index.The optimal monitoring well position and monitoring frequency were solved by the two-step Monte Carlo method and differential evolution algorithm given a known well monitoring locations and monitoring events.Based on the optimized monitoring well position and sampling frequency,the contamination source was identified by an improved Metropolis algorithm using the Latin hypercube sampling approach.The case study results show that the following parameters were obtained:1)the optimal monitoring well position(D)is at(445,200);and 2)the optimal monitoring frequency(Δt)is 7,providing that the monitoring events is set as 5 times.Employing the optimized monitoring well position and frequency,the mean errors of inverse modeling results in source parameters(M,X0,Y0,T0)were 9.20%,0.25%,0.0061%,and 0.33%,respectively.The optimized monitoring well position and sampling frequency canIt was also learnt that the improved Metropolis-Hastings algorithm(a Markov chain Monte Carlo method)can make the inverse modeling result independent of the initial sampling points and achieves an overall optimization,which significantly improved the accuracy and numerical stability of the inverse modeling results.
基金This work supports in part by National Key R&D Program of China(No.2018YFB2100400)National Science Foundation of China(No.61872100)+2 种基金Industrial Internet Innovation and Development Project of China(2019)PCL Future Regional Network Facilities for Large-scale Experiments and Applications(PCL2018KP001)Guangdong Higher Education Innovation Team(NO.2020KCXTD007).
文摘Material identification is a technology that can help to identify the type of target material.Existing approaches depend on expensive instruments,complicated pre-treatments and professional users.It is difficult to find a substantial yet effective material identification method to meet the daily use demands.In this paper,we introduce a Wi-Fi-signal based material identification approach by measuring the amplitude ratio and phase difference as the key features in the material classifier,which can significantly reduce the cost and guarantee a high level accuracy.In practical measurement of WiFi based material identification,these two features are commonly interrupted by the software/hardware noise of the channel state information(CSI).To eliminate the inherent noise of CSI,we design a denoising method based on the antenna array of the commercial off-the-shelf(COTS)Wi-Fi device.After that,the amplitude ratios and phase differences can be more stably utilized to classify the materials.We implement our system and evaluate its ability to identify materials in indoor environment.The result shows that our system can identify 10 commonly seen liquids with an average accuracy of 98.8%.It can also identify similar liquids with an overall accuracy higher than 95%,such as various concentrations of salt water.
文摘There is still an obstacle to prevent neural network from wider and more effective applications, i.e., the lack of effective theories of models identification. Based on information theory and its generalization, this paper introduces a universal method to achieve nonlinear models identification. Two key quantities, which are called nonlinear irreducible auto-correlation (NIAC) and generalized nonlinear irreducible auto-correlation (GNIAC), are defined and discussed. NIAC and GNIAC correspond with intrinstic irreducible auto-(dependency) (IAD) and generalized irreducible auto-(dependency) (GIAD) of time series respectively. By investigating the evolving trend of NIAC and GNIAC, the optimal auto-regressive order of nonlinear auto-regressive models could be determined naturally. Subsequently, an efficient algorithm computing NIAC and GNIAC is discussed. Experiments on simulating data sets and typical nonlinear prediction models indicate remarkable correlation between optimal auto-regressive order and the highest order that NIAC-GNIAC have a remarkable non-zero value, therefore demonstrate the validity of the proposal in this paper.
基金National Natural Science Foundation of China(No.50875204)National Basic Research "973" Project(No.2011CB706805)
文摘This study proposesan over all framework for applying wireless manufacturing(WM)technologies in a smart factory and establishes a smart factory data computing and information using system (dc-IUS). Several plug-and-play (PnP) application modules of the dc-IUS are presented in the fields of machining process and quality control,material flow and inventory control,and factory resource tracking. Different schemes are discussed about how and where to apply these functions. Then some running examples are studied to demonstrate the feasibility and reliability of dc-IUS. At last,the challenges of applying WM are discussed and a conclusion is given.
文摘Road geometric design data are a vital input for diverse transportation studies. This information is usually obtained from the road design project. However, these are not always available and the as-built course of the road may diverge considerably from its projected one, rendering subsequent studies inaccurate or impossible. Moreover, the systematic acquisition of this data for the entire road network of a country or even a state represents a very challenging and laborious task. This study's goal was the extraction of geometric design data for the paved segments of the Brazilian federal highway network, containing more than 47,000 km of highways. It presents the details of the method's adoption process, the particularities of its application to the dataset and the obtained geometric design information. Additionally, it provides a first overview of the Brazilian federal highway network composition (curves and tangents) and geometry.
基金supported by National Social Science Foundation of China(Grand No.13&ZD173)
文摘Purpose: The aim of this paper is to discuss how the keyword concentration change ratio(KCCR) is used while identifying the stability-mutation feature of Web search keywords during information analyses and predictions.Design/methodology/approach: By introducing the stability-mutation feature of keywords and its significance, the paper describes the function of the KCCR in identifying keyword stability-mutation features. By using Ginsberg's influenza keywords, the paper shows how the KCCR can be used to identify the keyword stability-mutation feature effectively.Findings: Keyword concentration ratio has close positive correlation with the change rate of research objects retrieved by users, so from the characteristic of the 'stability-mutation' of keywords, we can understand the relationship between these keywords and certain information. In general, keywords representing for mutation fit for the objects changing in short-term, while those representing for stability are suitable for long-term changing objects. Research limitations: It is difficult to acquire the frequency of keywords, so indexes or parameters which are closely related to the true search volume are chosen for this study.Practical implications: The stability-mutation feature identification of Web search keywords can be applied to predict and analyze the information of unknown public events through observing trends of keyword concentration ratio.Originality/value: The stability-mutation feature of Web search could be quantitatively described by the keyword concentration change ratio(KCCR). Through KCCR, the authors took advantage of Ginsberg's influenza epidemic data accordingly and demonstrated how accurate and effective the method proposed in this paper was while it was used in information analyses and predictions.
文摘针对无人机场景下行人重识别所呈现的多视角多尺度特点,以及传统的基于卷积神经网络的行人重识别算法受限于局部感受野结构和下采样操作,很难对行人图像的全局特征进行提取且图像空间特征分辨率不高。提出一种无人机场景下基于Transformer的轻量化行人重识别(Lightweight Transformer-based Person Re-Identification,LTReID)算法,利用多头多注意力机制从全局角度提取人体不同部分特征,使用Circle损失和边界样本挖掘损失,以提高图像特征提取和细粒度图像检索性能,并利用快速掩码搜索剪枝算法对Transformer模型进行训练后轻量化,以提高模型的无人机平台部署能力。更进一步,提出一种可学习的面向无人机场景的空间信息嵌入,在训练过程中通过学习获得优化的非视觉信息,以提取无人机多视角下行人的不变特征,提升行人特征识别的鲁棒性。最后,在实际的无人机行人重识别数据库中,讨论了在不同量级主干网和不同剪枝率情况下所提LTReID算法的行人重识别性能,并与多种行人重识别算法进行了性能对比,结果表明了所提算法的有效性和优越性。