Selecting plants adapted to the climatic and soil conditions of specific locations is essential for environmental protection and economic sustainability of agricultural and pastoral systems. This is particularly true ...Selecting plants adapted to the climatic and soil conditions of specific locations is essential for environmental protection and economic sustainability of agricultural and pastoral systems. This is particularly true for countries like China with a diversity of climates and soils and intended uses. Currently, proper species selection is difficult due to the absence of computer-based selection tools. Climate and soil GIS layers, matched with a matrix of plant characteristics through rules describing species tolerances would greatly improve the selection process. Better matching will reduce environmental hazards and economic risks associated with sub-optimal plant selection and performance. GIS-based climate and soil maps have been developed for China. A matrix of quantitative species tolerances has been developed for example forage species and used in combination with an internet map server that allows customized map creation. A web-based decision support system has been developed to provide current information and links to original data sources, supplementary materials, and selection strategies.展开更多
Image encryption has attracted much interest as a robust security solution for preventing unauthorized access to critical image data.Medical picture encryption is a crucial step in many cloud-based and healthcare appl...Image encryption has attracted much interest as a robust security solution for preventing unauthorized access to critical image data.Medical picture encryption is a crucial step in many cloud-based and healthcare applications.In this study,a strong cryptosystem based on a 2D chaotic map and Jigsaw transformation is presented for the encryption of medical photos in private Internet of Medical Things(IoMT)and cloud storage.A disorganized three-dimensional map is the foundation of the proposed cipher.The dispersion of pixel values and the permutation of their places in this map are accomplished using a nonlinear encoding process.The suggested cryptosystem enhances the security of the delivered medical images by performing many operations.To validate the efficiency of the recommended cryptosystem,various medical image kinds are used,each with its unique characteristics.Several measures are used to evaluate the proposed cryptosystem,which all support its robust security.The simulation results confirm the supplied cryptosystem’s secrecy.Furthermore,it provides strong robustness and suggested protection standards for cloud service applications,healthcare,and IoMT.It is seen that the proposed 3D chaotic cryptosystem obtains an average entropy of 7.9998,which is near its most excellent value of 8,and a typical NPCR value of 99.62%,which is also near its extreme value of 99.60%.Moreover,the recommended cryptosystem outperforms conventional security systems across the test assessment criteria.展开更多
In standard interval mapping (IM) of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. When this assumption of normality is violated, the most commonly adopted strategy is to use th...In standard interval mapping (IM) of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. When this assumption of normality is violated, the most commonly adopted strategy is to use the previous model after data transformation. However, an appropriate transformation may not exist or may be difficult to find. Also this approach can raise interpretation issues. An interesting alternative is to consider a skew-normal mixture model in standard IM, and the resulting method is here denoted as skew-normal IM. This flexible model that includes the usual symmetric normal distribution as a special case is important, allowing continuous variation from normality to non-normality. In this paper we briefly introduce the main peculiarities of the skew-normal distribution. The maximum likelihood estimates of parameters of the skew-normal distribution are obtained by the expectation-maximization (EM) algorithm. The proposed model is illustrated with real data from an intercross experiment that shows a significant departure from the normality assumption. The performance of the skew-normal IM is assessed via stochastic simulation. The results indicate that the skew-normal IM has higher power for QTL detection and better precision of QTL location as compared to standard IM and nonparametric IM.展开更多
文摘Selecting plants adapted to the climatic and soil conditions of specific locations is essential for environmental protection and economic sustainability of agricultural and pastoral systems. This is particularly true for countries like China with a diversity of climates and soils and intended uses. Currently, proper species selection is difficult due to the absence of computer-based selection tools. Climate and soil GIS layers, matched with a matrix of plant characteristics through rules describing species tolerances would greatly improve the selection process. Better matching will reduce environmental hazards and economic risks associated with sub-optimal plant selection and performance. GIS-based climate and soil maps have been developed for China. A matrix of quantitative species tolerances has been developed for example forage species and used in combination with an internet map server that allows customized map creation. A web-based decision support system has been developed to provide current information and links to original data sources, supplementary materials, and selection strategies.
基金The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Groups Funding program grant code(NU/RC/SERC/11/5).
文摘Image encryption has attracted much interest as a robust security solution for preventing unauthorized access to critical image data.Medical picture encryption is a crucial step in many cloud-based and healthcare applications.In this study,a strong cryptosystem based on a 2D chaotic map and Jigsaw transformation is presented for the encryption of medical photos in private Internet of Medical Things(IoMT)and cloud storage.A disorganized three-dimensional map is the foundation of the proposed cipher.The dispersion of pixel values and the permutation of their places in this map are accomplished using a nonlinear encoding process.The suggested cryptosystem enhances the security of the delivered medical images by performing many operations.To validate the efficiency of the recommended cryptosystem,various medical image kinds are used,each with its unique characteristics.Several measures are used to evaluate the proposed cryptosystem,which all support its robust security.The simulation results confirm the supplied cryptosystem’s secrecy.Furthermore,it provides strong robustness and suggested protection standards for cloud service applications,healthcare,and IoMT.It is seen that the proposed 3D chaotic cryptosystem obtains an average entropy of 7.9998,which is near its most excellent value of 8,and a typical NPCR value of 99.62%,which is also near its extreme value of 99.60%.Moreover,the recommended cryptosystem outperforms conventional security systems across the test assessment criteria.
基金Project supported in part by Foundation for Science and Technology(FCT) (No.SFRD/BD/5987/2001)the Operational ProgramScience,Technology,and Innovation of the FCT,co-financed by theEuropean Regional Development Fund (ERDF)
文摘In standard interval mapping (IM) of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. When this assumption of normality is violated, the most commonly adopted strategy is to use the previous model after data transformation. However, an appropriate transformation may not exist or may be difficult to find. Also this approach can raise interpretation issues. An interesting alternative is to consider a skew-normal mixture model in standard IM, and the resulting method is here denoted as skew-normal IM. This flexible model that includes the usual symmetric normal distribution as a special case is important, allowing continuous variation from normality to non-normality. In this paper we briefly introduce the main peculiarities of the skew-normal distribution. The maximum likelihood estimates of parameters of the skew-normal distribution are obtained by the expectation-maximization (EM) algorithm. The proposed model is illustrated with real data from an intercross experiment that shows a significant departure from the normality assumption. The performance of the skew-normal IM is assessed via stochastic simulation. The results indicate that the skew-normal IM has higher power for QTL detection and better precision of QTL location as compared to standard IM and nonparametric IM.