期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Spatial Variability of Soil Carbon to Nitrogen Ratio and Its Driving Factors in Ili River Valley,Xinjiang,Northwest China 被引量:4
1
作者 SUN Guojun LI Weihong +1 位作者 ZHU Chenggang CHEN Yaning 《Chinese Geographical Science》 SCIE CSCD 2017年第4期529-538,共10页
Soil carbon to nitrogen(C/N) ratio is one of the most important variables reflecting soil quality and ecological function,and an indicator for assessing carbon and nitrogen nutrition balance of soils.Its variation ref... Soil carbon to nitrogen(C/N) ratio is one of the most important variables reflecting soil quality and ecological function,and an indicator for assessing carbon and nitrogen nutrition balance of soils.Its variation reflects the carbon and nitrogen cycling of soils.In order to explore the spatial variability of soil C/N ratio and its controlling factors of the Ili River valley in Xinjiang Uygur Autonomous Region,Northwest China,the traditional statistical methods,including correlation analysis,geostatistic alanalys and multiple regression analysis were used.The statistical results showed that the soil C/N ratio varied from 7.00 to 23.11,with a mean value of 10.92,and the coefficient of variation was 31.3%.Correlation analysis showed that longitude,altitude,precipitation,soil water,organic carbon,and total nitrogen were positively correlated with the soil C/N ratio(P < 0.01),whereas negative correlations were found between the soil C/N ratio and latitude,temperature,soil bulk density and soil p H.Ordinary Cokriging interpolation showed that r and ME were 0.73 and 0.57,respectively,indicating that the prediction accuracy was high.The spatial autocorrelation of the soil C/N ratio was 6.4 km,and the nugget effect of the soil C/N ratio was 10% with a patchy distribution,in which the area with high value(12.00–20.41) accounted for 22.6% of the total area.Land uses changed the soil C/N ratio with the order of cultivated land > grass land > forest land > garden.Multiple regression analysis showed that geographical and climatic factors,and soil physical and chemical properties could independently explain 26.8%and 55.4% of the spatial features of soil C/N ratio,while human activities could independently explain 5.4% of the spatial features only.The spatial distribution of soil C/N ratio in the study has important reference value for managing soil carbon and nitrogen,and for improving ecological function to similar regions. 展开更多
关键词 soil C/N ratio spatial variability geostatistical analysis Cokriging interpolation multiple regression analysis ili River valley
下载PDF
Threats and Avoidance Measures of Frost Damage of‘Shushanggan’Apricot in the Ili River Valley
2
作者 Guizhi CONG Shuying CHEN +2 位作者 Yuping MA Jin WANG You SHI 《Asian Agricultural Research》 2021年第5期26-30,共5页
[Objectives]To explore the threat factors of frost damage to‘Shushanggan’Apricot in the Ili River Valley,and to provide measures for avoiding frost damage.[Methods]Based on the meteorological data of the Ili River V... [Objectives]To explore the threat factors of frost damage to‘Shushanggan’Apricot in the Ili River Valley,and to provide measures for avoiding frost damage.[Methods]Based on the meteorological data of the Ili River Valley counties and cities during the 12 years from 2010 to 2021 and using the critical low temperature of‘Shushanggan’Apricot as the main factor,we comprehensively analyzed the threats of low temperature in winter in January and late frost in April in spring in the Ili River Valley.[Results]During the 12 years,there were 4 years of low temperature below the critical(-26—-28℃)of‘Shushanggan’Apricot in the Ili River Valley counties and cities in January,accounting for 33.3%,and a total of 59 d.The frequency of occurrence was:Nilka County>Qapqal County>Yining City>Gongliu County>Huocheng County>Khorgos City>Yining County>Tekes County>Xinyuan County.In April,there were 9 years with a low temperature below the critical temperature(-0.6℃)flowering and fruit setting of‘Shushanggan’Apricot,accounting for 75%,and a total of 134 d.The frequency of occurrence was:Nilka County>Tekes County>Gongliu County>Yining County>Huocheng County>Khorgos City>Xinyuan County>Yining City>Qapqal County.The low temperature threats of‘Shushanggan’Apricot suitable cultivation areas were ranked as follows:Nilka County>Gongliu County>Tekes County>Qapqal County>Huocheng County>Yining City>Yining County>Khorgos City>Xinyuan County.Combined with the observation and survey of frost damage on the spot,we comprehensively analyzed and evaluated the cultivation area of‘Shushanggan’Apricot in the Ili River Valley:three counties(Nilka County,Gongliu County,and Tekes County)in the eastern region,except Xinyuan County,suffered frequent late frost damage,are suitable areas for the cultivation of‘Shushanggan’Apricot;three counties and two cities in the western region(Qapqal County,Huocheng County,Yining City,Yining County,Khorgos City)and Xinyuan County in the eastern region are suitable areas for‘Shushanggan’Apricot.The inversion zone at an altitude of 820-1100 in the valley is the superior area for‘Shushanggan’Apricot.[Conclusions]We explored the suitable areas in the origin area of‘Shushanggan’Apricot,and came up with measures to avoid frost damage,to provide a reference for the development of‘Shushanggan’Apricot. 展开更多
关键词 ‘Shushanggan’Apricot ili River valley Frost damage Threats Avoidance measures
下载PDF
Impact of land use/cover changes on carbon storage in a river valley in arid areas of Northwest China 被引量:7
3
作者 YANG Yuhai LI Weihong +2 位作者 ZHU Chenggang WANG Yang HUANG Xiang 《Journal of Arid Land》 SCIE CSCD 2017年第6期879-887,共9页
Soil carbon pools could become a CO_2 source or sink, depending on the directions of land use/cover changes. A slight change of soil carbon will inevitably affect the atmospheric CO_2 concentration and consequently th... Soil carbon pools could become a CO_2 source or sink, depending on the directions of land use/cover changes. A slight change of soil carbon will inevitably affect the atmospheric CO_2 concentration and consequently the climate. Based on the data from 127 soil sample sites, 48 vegetation survey plots, and Landsat TM images, we analyzed the land use/cover changes, estimated soil organic carbon(SOC) storage and vegetation carbon storage of grassland, and discussed the impact of grassland changes on carbon storage during 2000 to 2013 in the Ili River Valley of Northwest China. The results indicate that the areal extents of forestland, shrubland, moderate-coverage grassland(MCG), and the waterbody(including glaciers) decreased while the areal extents of high-coverage grassland(HCG),low-coverage grassland(LCG), residential and industrial land, and cultivated land increased. The grassland SOC density in 0–100 cm depth varied with the coverage in a descending order of HCG〉MCG〉LCG.The regional grassland SOC storage in the depth of 0–100 cm in 2013 increased by 0.25×1011 kg compared with that in 2000. The regional vegetation carbon storage(S_(rvc)) of grassland was 5.27×10~9 kg in2013 and decreased by 15.7% compared to that in 2000. The vegetation carbon reserves of the under-ground parts of vegetation(S_(ruvb)) in 2013 was 0.68×10~9 kg and increased by approximately 19.01%compared to that in 2000. This research can improve our understanding about the impact of land use/cover changes on the carbon storage in arid areas of Northwest China. 展开更多
关键词 land use/cover organic carbon grassland global change ili River valley
下载PDF
Spatiotemporal characteristics of cultural sites and their driving forces in the Ili River Valley during historical periods 被引量:6
4
作者 WANG Fang YANG Zhaoping +7 位作者 LUAN Fuming XIONG Heigang SHI Hui WANG Zhaoguo ZHAO XingYou QIN Wenmin WU Wenjie LI Dong 《Journal of Geographical Sciences》 SCIE CSCD 2015年第9期1089-1108,共20页
This study applies ArcGIS to analyze the spatiotemporal distribution of cultural sites in the Ill River Valley in northwestern China. It explores relationships between the sites' spatiotemporal evolutionary character... This study applies ArcGIS to analyze the spatiotemporal distribution of cultural sites in the Ill River Valley in northwestern China. It explores relationships between the sites' spatiotemporal evolutionary characteristics, human history, and the natural environment. The results indicate that the numbers and proportions of the sites, and the frequency of their oc- currence, exhibited an inverted V-shaped change trend during six historical periods. The "high in the east and low in the west" spatial distribution pattern of the first three periods shifted to the one the "high in the west and low in the east" during the latter three periods, demonstrating a change in the spatial center of gravity of human activities. The sites were mainly distributed on slopes of grades 1-5, with their proportions increasing from 75% during the Spring and Autumn Period (770 BC-476 BC)-Qin Dynasty (221 BC-207 BC) to 93.75% during the Qing Dynasty-Modern period. The concentrated distribution of site elevations shifted from grades 4-8 during the Spring and Autumn Period-Qin Dynasty, and the Western Han (206 BC-8)-Southern and Northern Dynasties (420-589), to grades 1-4 during the latter three periods. The number of sites showed a shifting trend from high-elevation mountains and hills to low-elevation plains, and from high slopes to low slopes. In particular, the sites exhibited a special "moist" evolutionary pattern of migration from middle and upstream areas to downstream areas, as opposed to the migration pattern of sites located in typical arid areas. The study also considered factors influencing the distribution and spatiotemporal evolution of cultural sites, notably, human factors and natural factors. 展开更多
关键词 ili River valley historical periods cultural sites spatiotemporal distribution driving forces
原文传递
Distribution of soil organic carbon under different vegetation zones in the Ili River Valley, Xinjiang 被引量:5
5
作者 YANG Yuhai CHEN Yaning LI Weihong CHEN Yapeng 《Journal of Geographical Sciences》 SCIE CSCD 2010年第5期729-740,共12页
We analyzed and estimated the distribution and reserves of soil organic carbon under nine different vegetation conditions including alpine meadow, meadow steppe, typical steppe, desert steppe, and temperate coniferous... We analyzed and estimated the distribution and reserves of soil organic carbon under nine different vegetation conditions including alpine meadow, meadow steppe, typical steppe, desert steppe, and temperate coniferous forest and so on, in the Ill River valley, Xin- jiang according to data from field investigations and laboratory analyses in 2008 and 2009. The study results show that the soil organic carbon content in the Ili River valley varies with the type of vegetation. In the 0-50 cm soil horizon, the soil organic carbon content is the highest under the vegetation types of alpine meadow and meadow steppe, slightly lower under temperate coniferous forest and typical steppe, and the lowest under the intrazonal vegetation and desert vegetation types. The soil organic carbon content shows basically a tendency to decrease as soil depth increases under various vegetation types except in the case of the intrazonal vegetation. Similarly, the soil organic carbon density is the highest and varies little under the vegetation types of alpine meadow, meadow steppe and temperate coniferous forest, and is the lowest under the desert vegetation type. Both the soil organic carbon content and density in the topsoil of meadows in the Ili River valley are high, so pro- tecting meadows in the Ili River valley, and especially their topsoil, should be a priority so that the potential of change in soil organic carbon in the shallow soil horizon is reduced, and this means maintenance of the stability of the soil carbon pool. 展开更多
关键词 vegetation GRASSLAND soil organic carbon ili River valley
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部