An approach of distane map based imageenhancement (DMIE) is proposed. It is applied toconventional interpolations to get sharp images. Edgedetection is performed after images are interpolatedby linear interpolations. ...An approach of distane map based imageenhancement (DMIE) is proposed. It is applied toconventional interpolations to get sharp images. Edgedetection is performed after images are interpolatedby linear interpolations. To meet the two conditionsset for DMIE, i. e., no abrupt changes and no over-boosting, different boosting rate should be used inadjusting pixel intensities. When the boosting rate isdetermined by using the distance from enhancedpixels to nearest edges, edge-oriented imageenhancement is obtained. By using Erosion technique,the range for pixel intensity adiustment is set.Over-enhancement is avoided by limiting the pixel iutensities in enhancement within the range. A unifled linear-time algoritiml for disance transform is adopted to deal with the calculation of Euelidean distance of the images.Its computation complexity is 0(N).After the preparation,i.e.,distance transforming and erosion,the images get more and more sharpened while no over.boosting.Occurs by repeating the enhancement procedure ,The simplicity of the enhancement operation makes DMIE suitable for enhancement rate adjusting展开更多
Anti-detection is becoming as an emerging challenge for anti-phishing.This paper solves the threats of anti-detection from the threshold setting condition.Enough webpages are considered to complicate threshold setting...Anti-detection is becoming as an emerging challenge for anti-phishing.This paper solves the threats of anti-detection from the threshold setting condition.Enough webpages are considered to complicate threshold setting condition when the threshold is settled.According to the common visual behavior which is easily attracted by the salient region of webpages,image retrieval methods based on texton correlation descriptor(TCD)are improved to obtain enough webpages which have similarity in the salient region for the images of webpages.There are two steps for improving TCD which has advantage of recognizing the salient region of images:(1)This paper proposed Weighted Euclidean Distance based on neighborhood location(NLW-Euclidean distance)and double cross windows,and combine them to solve the problems in TCD;(2)Space structure is introduced to map the image set to Euclid space so that similarity relation among images can be used to complicate threshold setting conditions.Experimental results show that the proposed method can improve the effectiveness of anti-phishing and make the system more stable,and significantly reduce the possibilities of being hacked to be used as mining systems for blockchain.展开更多
Usually image assessment methods could be classified into two categories: subjective as-sessments and objective ones. The latter are judged by the correlation coefficient with subjective quality measurement MOS (Mean ...Usually image assessment methods could be classified into two categories: subjective as-sessments and objective ones. The latter are judged by the correlation coefficient with subjective quality measurement MOS (Mean Opinion Score). This paper presents an objective quality assessment algorithm special for binary images. In the algorithm, noise energy is measured by Euclidean distance between noises and signals and the structural effects caused by noise are described by Euler number change. The assessment on image quality is calculated quantitatively in terms of PSNR (Peak Signal to Noise Ratio). Our experiments show that the results of the algorithm are highly correlative with subjective MOS and the algorithm is more simple and computational saving than traditional objective assessment methods.展开更多
The paper analyze and improve the SIFT optimized algorithm, and proposes an image matching method for SIFT algorithm based on quasi Euclidean distance and KD-tree. Experiments show that this algorithm has matching mor...The paper analyze and improve the SIFT optimized algorithm, and proposes an image matching method for SIFT algorithm based on quasi Euclidean distance and KD-tree. Experiments show that this algorithm has matching more points, high matching accuracy, no repealed points and higher advantage of matching efficiency based on keeping the basic characteristics of SIFT algorithm unchanged, and provides precise matching point to generate precise image stitching and other related fields of the follow-up product. At the same time, this method was applied to the layout optimization and achieved good results.展开更多
The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter ...The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter and propose two novel similarity measures for the local matching methods and the holistic matching methods respectively.One is Earth Mover's Distance with Hamming and Lp ground distance(EMD-HammingLp),which is a cross-bin dissimilarity measure for LBP histograms.The other is IMage Hamming Distance(IMHD),which is a dissimilarity measure for the whole LBP images.Experiments on FERET database show that the proposed two similarity measures outperform the state-of-the-art Chi-square similarity measure for extraction of LBP features.展开更多
文摘An approach of distane map based imageenhancement (DMIE) is proposed. It is applied toconventional interpolations to get sharp images. Edgedetection is performed after images are interpolatedby linear interpolations. To meet the two conditionsset for DMIE, i. e., no abrupt changes and no over-boosting, different boosting rate should be used inadjusting pixel intensities. When the boosting rate isdetermined by using the distance from enhancedpixels to nearest edges, edge-oriented imageenhancement is obtained. By using Erosion technique,the range for pixel intensity adiustment is set.Over-enhancement is avoided by limiting the pixel iutensities in enhancement within the range. A unifled linear-time algoritiml for disance transform is adopted to deal with the calculation of Euelidean distance of the images.Its computation complexity is 0(N).After the preparation,i.e.,distance transforming and erosion,the images get more and more sharpened while no over.boosting.Occurs by repeating the enhancement procedure ,The simplicity of the enhancement operation makes DMIE suitable for enhancement rate adjusting
基金The work reported in this paper was supported by the Joint research project of Jiangsu Province under Grant No.BY2016026-04the Opening Project of State Key Laboratory for Novel Software Technology of Nanjing University under Grant No.KFKT2018B27+1 种基金the National Natural Science Foundation for Young Scientists of China under Grant No.61303263the Jiangsu Provincial Research Foundation for Basic Research(Natural Science Foundation)under Grant No.BK20150201.
文摘Anti-detection is becoming as an emerging challenge for anti-phishing.This paper solves the threats of anti-detection from the threshold setting condition.Enough webpages are considered to complicate threshold setting condition when the threshold is settled.According to the common visual behavior which is easily attracted by the salient region of webpages,image retrieval methods based on texton correlation descriptor(TCD)are improved to obtain enough webpages which have similarity in the salient region for the images of webpages.There are two steps for improving TCD which has advantage of recognizing the salient region of images:(1)This paper proposed Weighted Euclidean Distance based on neighborhood location(NLW-Euclidean distance)and double cross windows,and combine them to solve the problems in TCD;(2)Space structure is introduced to map the image set to Euclid space so that similarity relation among images can be used to complicate threshold setting conditions.Experimental results show that the proposed method can improve the effectiveness of anti-phishing and make the system more stable,and significantly reduce the possibilities of being hacked to be used as mining systems for blockchain.
基金Supported by Innovation Fund for Small Technology Based Firms, China (No.04C26213301189)Science and Technology Foundation by Beijng Jiaotong University (No.2005SM009)the Key Laboratory of Advanced Information Science and Network Technology of Beijing (No.TDXX0509).
文摘Usually image assessment methods could be classified into two categories: subjective as-sessments and objective ones. The latter are judged by the correlation coefficient with subjective quality measurement MOS (Mean Opinion Score). This paper presents an objective quality assessment algorithm special for binary images. In the algorithm, noise energy is measured by Euclidean distance between noises and signals and the structural effects caused by noise are described by Euler number change. The assessment on image quality is calculated quantitatively in terms of PSNR (Peak Signal to Noise Ratio). Our experiments show that the results of the algorithm are highly correlative with subjective MOS and the algorithm is more simple and computational saving than traditional objective assessment methods.
文摘The paper analyze and improve the SIFT optimized algorithm, and proposes an image matching method for SIFT algorithm based on quasi Euclidean distance and KD-tree. Experiments show that this algorithm has matching more points, high matching accuracy, no repealed points and higher advantage of matching efficiency based on keeping the basic characteristics of SIFT algorithm unchanged, and provides precise matching point to generate precise image stitching and other related fields of the follow-up product. At the same time, this method was applied to the layout optimization and achieved good results.
文摘The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter and propose two novel similarity measures for the local matching methods and the holistic matching methods respectively.One is Earth Mover's Distance with Hamming and Lp ground distance(EMD-HammingLp),which is a cross-bin dissimilarity measure for LBP histograms.The other is IMage Hamming Distance(IMHD),which is a dissimilarity measure for the whole LBP images.Experiments on FERET database show that the proposed two similarity measures outperform the state-of-the-art Chi-square similarity measure for extraction of LBP features.