The Ki67 index (KI) is a standard clinical marker for tumor proliferation;however, its application is hindered by intratumoral heterogeneity. In this study, we used digital image analysis to comprehensively analyze Ki...The Ki67 index (KI) is a standard clinical marker for tumor proliferation;however, its application is hindered by intratumoral heterogeneity. In this study, we used digital image analysis to comprehensively analyze Ki67 heterogeneity and distribution patterns in breast carcinoma. Using Smart Pathology software, we digitized and analyzed 42 excised breast carcinoma Ki67 slides. Boxplots, histograms, and heat maps were generated to illustrate the KI distribution. We found that 30% of cases (13/42) exhibited discrepancies between global and hotspot KI when using a 14% KI threshold for classification. Patients with higher global or hotspot KI values displayed greater heterogenicity. Ki67 distribution patterns were categorized as randomly distributed (52%, 22/42), peripheral (43%, 18/42), and centered (5%, 2/42). Our sampling simulator indicated analyzing more than 10 high-power fields was typically required to accurately estimate global KI, with sampling size being correlated with heterogeneity. In conclusion, using digital image analysis in whole-slide images allows for comprehensive Ki67 profile assessment, shedding light on heterogeneity and distribution patterns. This spatial information can facilitate KI surveys of breast cancer and other malignancies.展开更多
Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solu...Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solution for detection and monitoring.Unmanned aerial vehicles(UAVs)have recently emerged as a tool for algal bloom detection,efficiently providing on-demand images at high spatiotemporal resolutions.This study developed an image processing method for algal bloom area estimation from the aerial images(obtained from the internet)captured using UAVs.As a remote sensing method of HAB detection,analysis,and monitoring,a combination of histogram and texture analyses was used to efficiently estimate the area of HABs.Statistical features like entropy(using the Kullback-Leibler method)were emphasized with the aid of a gray-level co-occurrence matrix.The results showed that the orthogonal images demonstrated fewer errors,and the morphological filter best detected algal blooms in real time,with a precision of 80%.This study provided efficient image processing approaches using on-board UAVs for HAB monitoring.展开更多
In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in faci...In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in facing different shopping experience scenarios,this paper presents a sentiment analysis method that combines the ecommerce reviewkeyword-generated imagewith a hybrid machine learning-basedmodel,inwhich theWord2Vec-TextRank is used to extract keywords that act as the inputs for generating the related images by generative Artificial Intelligence(AI).Subsequently,a hybrid Convolutional Neural Network and Support Vector Machine(CNNSVM)model is applied for sentiment classification of those keyword-generated images.For method validation,the data randomly comprised of 5000 reviews from Amazon have been analyzed.With superior keyword extraction capability,the proposedmethod achieves impressive results on sentiment classification with a remarkable accuracy of up to 97.13%.Such performance demonstrates its advantages by using the text-to-image approach,providing a unique perspective for sentiment analysis in the e-commerce review data compared to the existing works.Thus,the proposed method enhances the reliability and insights of customer feedback surveys,which would also establish a novel direction in similar cases,such as social media monitoring and market trend research.展开更多
Objective To analyze the differences in the correlation of tongue image indicators among patients with benign lung nodules and lung cancer.Methods From July 1;2020 to March 31;2022;clinical information of lung cancer ...Objective To analyze the differences in the correlation of tongue image indicators among patients with benign lung nodules and lung cancer.Methods From July 1;2020 to March 31;2022;clinical information of lung cancer patients and benign lung nodules patients was collected at the Oncology Department of Longhua Hos-pital Affiliated to Shanghai University of Traditional Chinese Medicine and the Physical Ex-amination Center of Shuguang Hospital Affiliated to Shanghai University of Traditional Chi-nese Medicine;respectively.We obtained tongue images from patients with benign lung nod-ules and lung cancer using the TFDA-1 digital tongue diagnosis instrument;and analyzed these images with the TDAS V2.0 software.The extracted indicators included color space pa-rameters in the Lab system for both the tongue body(TB)and tongue coating(TC)(TB/TC-L;TB/TC-a;and TB/TC-b);textural parameters[TB/TC-contrast(CON);TB/TC-angular second moment(ASM);TB/TC-entropy(ENT);and TB/TC-MEAN];as well as TC parameters(perAll and perPart).The bivariate correlation of TB and TC features was analyzed using Pearson’s or Spearman’s correlation analysis;and the overall correlation was analyzed using canonical correlation analysis(CCA).Results Samples from 307 patients with benign lung nodules and 276 lung cancer patients were included after excluding outliers and extreme values.Simple correlation analysis indi-cated that the correlation of TB-L with TC-L;TB-b with TC-b;and TB-b with perAll in lung cancer group was higher than that in benign nodules group.Moreover;the correlation of TB-a with TC-a;TB-a with perAll;and the texture parameters of the TB(TB-CON;TB-ASM;TB-ENT;and TB-MEAN)with the texture parameters of the TC(TC-CON;TC-ASM;TC-ENT;and TC-MEAN)in benign nodules group was higher than lung cancer group.CCA further demon-strated a strong correlation between the TB and TC parameters in lung cancer group;with the first and second pairs of typical variables in benign nodules and lung cancer groups indicat-ing correlation coefficients of 0.918 and 0.817(P<0.05);and 0.940 and 0.822(P<0.05);re-spectively.Conclusion Benign lung nodules and lung cancer patients exhibited differences in correla-tion in the L;a;and b values of the TB and TC;as well as the perAll value of the TC;and the texture parameters(TB/TC-CON;TB/TC-ASM;TB/TC-ENT;and TB/TC-MEAN)between the TB and TC.Additionally;there were differences in the overall correlation of the TB and TC be-tween the two groups.Objective tongue diagnosis indicators can effectively assist in the diag-nosis of benign lung nodules and lung cancer;thereby providing a scientific basis for the ear-ly detection;diagnosis;and treatment of lung cancer.展开更多
Understanding metal accumulation at organ level in roots, leaves and seeds in O. glaberrima (OG) is crucial for improving physiological and metabolic aspects in growing Asian and African rice in salted areas. The micr...Understanding metal accumulation at organ level in roots, leaves and seeds in O. glaberrima (OG) is crucial for improving physiological and metabolic aspects in growing Asian and African rice in salted areas. The micro-analytical imaging techniques are required to reveal its accumulation and distribution within plant tissues. PIXE studies have been performed to determine different elements in rice plants. The existing microbeam analytical technique at the iThemba LABS will be applied for the 2D image mapping of fresh rice tissues to perform a concentration of low atomic mass elements (such as Al, Si, P, S, Cl, Ca, Ti, Mn, Fe, Cu, Br, Zn and K) with detection limits of typically 1-10 μg/g. Comparison of the distribution of the elements between leaves, root and seed samples using uptake and distribution of elements in particular environmental conditions with potential amount of salt in water have been performed. We are also expecting to indicate metal exclusion as salt tolerance strategies from leaves, root, and seed compartments using matrix correlation between samples and between elements on rice species.展开更多
Serial remote sensing images offer a valuable means of tracking the evolutionary changes and growth of a specific geographical area over time.Although the original images may provide limited insights,they harbor consi...Serial remote sensing images offer a valuable means of tracking the evolutionary changes and growth of a specific geographical area over time.Although the original images may provide limited insights,they harbor considerable potential for identifying clusters and patterns.The aggregation of these serial remote sensing images(SRSI)becomes increasingly viable as distinct patterns emerge in diverse scenarios,such as suburbanization,the expansion of native flora,and agricultural activities.In a novel approach,we propose an innovative method for extracting sequential patterns by combining Ant Colony Optimization(ACD)and Empirical Mode Decomposition(EMD).This integration of the newly developed EMD and ACO techniques proves remarkably effective in identifying the most significant characteristic features within serial remote sensing images,guided by specific criteria.Our findings highlight a substantial improvement in the efficiency of sequential pattern mining through the application of this unique hybrid method,seamlessly integrating EMD and ACO for feature selection.This study exposes the potential of our innovative methodology,particularly in the realms of urbanization,native vegetation expansion,and agricultural activities.展开更多
Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological prote...Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological protection and sustainable development.In this study,the trend of erosion-deposition evolution in the Qingshuigou was investigated based on 38 coastline phases extracted from Landsat series images of the YRD at one-year intervals from 1984 to 2021.The periodicity of the scouring and deposition evolution was also analyzed using wavelet analysis.Results showed that the total area of the Qingshuigou was affected by deposition and erosion and that the fluctuation first increased and then decreased.The total area reached a maximum in 1993.The depositional area first increased and then decreased,whereas the overall erosion area decreased.Deposition and erosion areas showed periodic changes to some extent;however,the periodic signal intensity decreased.Furthermore,factors including channel morphological evolution and variations in water and sediment discharge affect the spatiotemporal dynamics of erosion and deposition processes.The application of nonconsistency tests finally revealed that deposition area and flushing magnitude exhibited non-stationarities,which are potentially attributed to impacts from climatic change drivers.展开更多
Purpose: This review examines the diagnostic value of transvaginal 3D ultrasound image texture analysis for the diagnosis of uterine adhesions. Materials and Methods: The total clinical data of 53 patients with uterin...Purpose: This review examines the diagnostic value of transvaginal 3D ultrasound image texture analysis for the diagnosis of uterine adhesions. Materials and Methods: The total clinical data of 53 patients with uterine adhesions diagnosed by hysteroscopy and the imaging data of transvaginal three-dimensional ultrasound from the Second Affiliated Hospital of Chongqing Medical University from June 2022 to August 2023 were retrospectively analysed. Based on hysteroscopic surgical records, patients were divided into two independent groups: normal endometrium and uterine adhesion sites. The samples were divided into a training set and a test set, and the transvaginal 3D ultrasound was used to outline the region of interest (ROI) and extract texture features for normal endometrium and uterine adhesions based on hysteroscopic surgical recordings, the training set data were feature screened and modelled using lasso regression and cross-validation, and the diagnostic efficacy of the model was assessed by applying the subjects’ operating characteristic (ROC) curves. Results: For each group, 290 texture feature parameters were extracted and three higher values were screened out, and the area under the curve of the constructed ultrasonographic scoring model was 0.658 and 0.720 in the training and test sets, respectively. Conclusion Relative clinical value of transvaginal three-dimensional ultrasound image texture analysis for the diagnosis of uterine adhesions.展开更多
Health care is an important part of human life and is a right for everyone. One of the most basic human rights is to receive health care whenever they need it. However, this is simply not an option for everyone due to...Health care is an important part of human life and is a right for everyone. One of the most basic human rights is to receive health care whenever they need it. However, this is simply not an option for everyone due to the social conditions in which some communities live and not everyone has access to it. This paper aims to serve as a reference point and guide for users who are interested in monitoring their health, particularly their blood analysis to be aware of their health condition in an easy way. This study introduces an algorithmic approach for extracting and analyzing Complete Blood Count (CBC) parameters from scanned images. The algorithm employs Optical Character Recognition (OCR) technology to process images containing tabular data, specifically targeting CBC parameter tables. Upon image processing, the algorithm extracts data and identifies CBC parameters and their corresponding values. It evaluates the status (High, Low, or Normal) of each parameter and subsequently presents evaluations, and any potential diagnoses. The primary objective is to automate the extraction and evaluation of CBC parameters, aiding healthcare professionals in swiftly assessing blood analysis results. The algorithmic framework aims to streamline the interpretation of CBC tests, potentially improving efficiency and accuracy in clinical diagnostics.展开更多
The development of artificial intelligence (AI), particularly deep learning, has made it possible to accelerate and improve the processing of data collected in different fields (commerce, medicine, surveillance or sec...The development of artificial intelligence (AI), particularly deep learning, has made it possible to accelerate and improve the processing of data collected in different fields (commerce, medicine, surveillance or security, agriculture, etc.). Most related works use open source consistent image databases. This is the case for ImageNet reference data such as coco data, IP102, CIFAR-10, STL-10 and many others with variability representatives. The consistency of its images contributes to the spectacular results observed in its fields with deep learning. The application of deep learning which is making its debut in geology does not, to our knowledge, include a database of microscopic images of thin sections of open source rock minerals. In this paper, we evaluate three optimizers under the AlexNet architecture to check whether our acquired mineral images have object features or patterns that are clear and distinct to be extracted by a neural network. These are thin sections of magmatic rocks (biotite and 2-mica granite, granodiorite, simple granite, dolerite, charnokite and gabbros, etc.) which served as support. We use two hyper-parameters: the number of epochs to perform complete rounds on the entire data set and the “learning rate” to indicate how quickly the weights in the network will be modified during optimization. Using Transfer Learning, the three (3) optimizers all based on the gradient descent methods of Stochastic Momentum Gradient Descent (sgdm), Root Mean Square Propagation (RMSprop) algorithm and Adaptive Estimation of moment (Adam) achieved better performance. The recorded results indicate that the Momentum optimizer achieved the best scores respectively of 96.2% with a learning step set to 10−3 for a fixed choice of 350 epochs during this variation and 96, 7% over 300 epochs for the same value of the learning step. This performance is expected to provide excellent insight into image quality for future studies. Then they participate in the development of an intelligent system for the identification and classification of minerals, seven (7) in total (quartz, biotite, amphibole, plagioclase, feldspar, muscovite, pyroxene) and rocks.展开更多
Large language models(LLMs),such as ChatGPT developed by OpenAI,represent a significant advancement in artificial intelligence(AI),designed to understand,generate,and interpret human language by analyzing extensive te...Large language models(LLMs),such as ChatGPT developed by OpenAI,represent a significant advancement in artificial intelligence(AI),designed to understand,generate,and interpret human language by analyzing extensive text data.Their potential integration into clinical settings offers a promising avenue that could transform clinical diagnosis and decision-making processes in the future(Thirunavukarasu et al.,2023).This article aims to provide an in-depth analysis of LLMs’current and potential impact on clinical practices.Their ability to generate differential diagnosis lists underscores their potential as invaluable tools in medical practice and education(Hirosawa et al.,2023;Koga et al.,2023).展开更多
Android smartphones largely dominate the smartphone market. For this reason, it is very important to examine these smartphones in terms of digital forensics since they are often used as evidence in trials. It is possi...Android smartphones largely dominate the smartphone market. For this reason, it is very important to examine these smartphones in terms of digital forensics since they are often used as evidence in trials. It is possible to acquire a physical or logical image of these devices. Acquiring physical and logical images has advantages and disadvantages compared to each other. Creating the logical image is done at the file system level. Analysis can be made on this logical image. Both logical image acquisition and analysis of the image can be done by software tools. In this study, the differences between logical image and physical image acquisition in Android smartphones, their advantages and disadvantages compared to each other, the difficulties that may be encountered in obtaining physical images, which type of image contributes to obtaining more useful and effective data, which one should be preferred for different conditions, and the benefits of having root authority are discussed. The practice of getting the logical image of the Android smartphones and making an analysis on the image is also included. Although root privileges are not required for logical image acquisition, it has been observed that very limited data will be obtained with the logical image created without root privileges. Nevertheless, logical image acquisition has advantages too against physical image acquisition.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
This editorial examines a recent study that used radiomics based on computed tomography(CT)to predict the expression of the fibroblast-related gene enhancer of zeste homolog 2(EZH2)and its correlation with the surviva...This editorial examines a recent study that used radiomics based on computed tomography(CT)to predict the expression of the fibroblast-related gene enhancer of zeste homolog 2(EZH2)and its correlation with the survival of patients with hepatocellular carcinoma(HCC).By integrating radiomics with molecular analysis,the study presented a strategy for accurately predicting the expression of EZH2 from CT scans.The findings demonstrated a strong link between the radiomics model,EZH2 expression,and patient prognosis.This noninvasive approach provides valuable insights into the therapeutic management of HCC.展开更多
Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Call...Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Calligraphy and seal engraving,as two closely related systems in traditional Chinese art,have developed through the ages.Due to changes in lifestyle and advancements in modern technology,their original functions of daily writing and verification have gradually diminished.Instead,they have increasingly played a significant role in commercial art.This study utilizes the Evaluation Grid Method(EGM)and the Analytic Hierarchy Process(AHP)to research the key preference factors in the application of calligraphy and seal engraving imagery.Different from the traditional 5-point equal interval semantic questionnaire,this study employs a non-equal interval semantic questionnaire with a golden ratio scale,distinguishing the importance ratio of adjacent semantic meanings and highlighting the weighted emphasis on visual aesthetics.Additionally,the study uses Importance-Performance Analysis(IPA)and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)to obtain the key preference sequence of calligraphy and seal engraving culture.Plus,the Choquet integral comprehensive evaluation is used as a reference for IPA comparison.It is hoped that this study can provide cultural imagery references and research methods,injecting further creativity into industrial design.展开更多
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional imag...Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.展开更多
To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation f...To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.展开更多
The aim is to establish an automatic system to analyze the maneuver performance of fish. A high speed camera (1 000 frame/s) is employed to record fast-start maneuver. Three steps are taken to analyze the kinematics...The aim is to establish an automatic system to analyze the maneuver performance of fish. A high speed camera (1 000 frame/s) is employed to record fast-start maneuver. Three steps are taken to analyze the kinematics: first, the midline in the first image is partitioned into equal interval lengths and the coordinates of all inter segmental points are saved. Secondly, these points coordinates are searched in the next frame with the digital image correlation (DIC) method, then these points are fitted with a spline curve function. Repeat this step until all the midlines are figured out frame by frame. Finally, according to the variety of midlines, the kinematics of the fast-start is calculated. Using this system to test carp C-start, the duration is divided into two stages: stage 1 is defined as the formation of the C shape and stage 2 as the return flip of the tail followed with forward motion. By tracing the middle line, the kinematic parameters of turning rate, centre of mass (CM) turning rate, CM turning radius, etc. are obtained.展开更多
In order to realize the detection and analysis of microalgae in sediment samples with complex scenes, the project takes advantage of the character of microalgae that they can auto-fluoresce when exposed to the illumin...In order to realize the detection and analysis of microalgae in sediment samples with complex scenes, the project takes advantage of the character of microalgae that they can auto-fluoresce when exposed to the illumination of certain exciation waves. The project takes grey-scale and fluorescent pictures of microalgae in the same field of view and uses the image processing technique to deal with the images, such as threshold segmentation, contour and texture analysis and pattern recognition. The results show that the fluorescent image can effectively elimate the yawp in the complex background and make the consequent image processing more effective and easy. Then the project comes to the conclusion that fluorescence-assisted image processing can realize the detection and analysis of microalgae in sediment samples containing complex scenes.展开更多
文摘The Ki67 index (KI) is a standard clinical marker for tumor proliferation;however, its application is hindered by intratumoral heterogeneity. In this study, we used digital image analysis to comprehensively analyze Ki67 heterogeneity and distribution patterns in breast carcinoma. Using Smart Pathology software, we digitized and analyzed 42 excised breast carcinoma Ki67 slides. Boxplots, histograms, and heat maps were generated to illustrate the KI distribution. We found that 30% of cases (13/42) exhibited discrepancies between global and hotspot KI when using a 14% KI threshold for classification. Patients with higher global or hotspot KI values displayed greater heterogenicity. Ki67 distribution patterns were categorized as randomly distributed (52%, 22/42), peripheral (43%, 18/42), and centered (5%, 2/42). Our sampling simulator indicated analyzing more than 10 high-power fields was typically required to accurately estimate global KI, with sampling size being correlated with heterogeneity. In conclusion, using digital image analysis in whole-slide images allows for comprehensive Ki67 profile assessment, shedding light on heterogeneity and distribution patterns. This spatial information can facilitate KI surveys of breast cancer and other malignancies.
文摘Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solution for detection and monitoring.Unmanned aerial vehicles(UAVs)have recently emerged as a tool for algal bloom detection,efficiently providing on-demand images at high spatiotemporal resolutions.This study developed an image processing method for algal bloom area estimation from the aerial images(obtained from the internet)captured using UAVs.As a remote sensing method of HAB detection,analysis,and monitoring,a combination of histogram and texture analyses was used to efficiently estimate the area of HABs.Statistical features like entropy(using the Kullback-Leibler method)were emphasized with the aid of a gray-level co-occurrence matrix.The results showed that the orthogonal images demonstrated fewer errors,and the morphological filter best detected algal blooms in real time,with a precision of 80%.This study provided efficient image processing approaches using on-board UAVs for HAB monitoring.
基金supported in part by the Guangzhou Science and Technology Plan Project under Grants 2024B03J1361,2023B03J1327,and 2023A04J0361in part by the Open Fund Project of Hubei Province Key Laboratory of Occupational Hazard Identification and Control under Grant OHIC2023Y10+3 种基金in part by the Guangdong Province Ordinary Colleges and Universities Young Innovative Talents Project under Grant 2023KQNCX036in part by the Special Fund for Science and Technology Innovation Strategy of Guangdong Province(Climbing Plan)under Grant pdjh2024a226in part by the Key Discipline Improvement Project of Guangdong Province under Grant 2022ZDJS015in part by theResearch Fund of Guangdong Polytechnic Normal University under Grants 22GPNUZDJS17 and 2022SDKYA015.
文摘In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in facing different shopping experience scenarios,this paper presents a sentiment analysis method that combines the ecommerce reviewkeyword-generated imagewith a hybrid machine learning-basedmodel,inwhich theWord2Vec-TextRank is used to extract keywords that act as the inputs for generating the related images by generative Artificial Intelligence(AI).Subsequently,a hybrid Convolutional Neural Network and Support Vector Machine(CNNSVM)model is applied for sentiment classification of those keyword-generated images.For method validation,the data randomly comprised of 5000 reviews from Amazon have been analyzed.With superior keyword extraction capability,the proposedmethod achieves impressive results on sentiment classification with a remarkable accuracy of up to 97.13%.Such performance demonstrates its advantages by using the text-to-image approach,providing a unique perspective for sentiment analysis in the e-commerce review data compared to the existing works.Thus,the proposed method enhances the reliability and insights of customer feedback surveys,which would also establish a novel direction in similar cases,such as social media monitoring and market trend research.
基金National Natural Science Foundation of China(82305090)Science and Technology Commission of Shanghai Municipality(22YF1448900)Shanghai Municipal Health Commission(20234Y0168).
文摘Objective To analyze the differences in the correlation of tongue image indicators among patients with benign lung nodules and lung cancer.Methods From July 1;2020 to March 31;2022;clinical information of lung cancer patients and benign lung nodules patients was collected at the Oncology Department of Longhua Hos-pital Affiliated to Shanghai University of Traditional Chinese Medicine and the Physical Ex-amination Center of Shuguang Hospital Affiliated to Shanghai University of Traditional Chi-nese Medicine;respectively.We obtained tongue images from patients with benign lung nod-ules and lung cancer using the TFDA-1 digital tongue diagnosis instrument;and analyzed these images with the TDAS V2.0 software.The extracted indicators included color space pa-rameters in the Lab system for both the tongue body(TB)and tongue coating(TC)(TB/TC-L;TB/TC-a;and TB/TC-b);textural parameters[TB/TC-contrast(CON);TB/TC-angular second moment(ASM);TB/TC-entropy(ENT);and TB/TC-MEAN];as well as TC parameters(perAll and perPart).The bivariate correlation of TB and TC features was analyzed using Pearson’s or Spearman’s correlation analysis;and the overall correlation was analyzed using canonical correlation analysis(CCA).Results Samples from 307 patients with benign lung nodules and 276 lung cancer patients were included after excluding outliers and extreme values.Simple correlation analysis indi-cated that the correlation of TB-L with TC-L;TB-b with TC-b;and TB-b with perAll in lung cancer group was higher than that in benign nodules group.Moreover;the correlation of TB-a with TC-a;TB-a with perAll;and the texture parameters of the TB(TB-CON;TB-ASM;TB-ENT;and TB-MEAN)with the texture parameters of the TC(TC-CON;TC-ASM;TC-ENT;and TC-MEAN)in benign nodules group was higher than lung cancer group.CCA further demon-strated a strong correlation between the TB and TC parameters in lung cancer group;with the first and second pairs of typical variables in benign nodules and lung cancer groups indicat-ing correlation coefficients of 0.918 and 0.817(P<0.05);and 0.940 and 0.822(P<0.05);re-spectively.Conclusion Benign lung nodules and lung cancer patients exhibited differences in correla-tion in the L;a;and b values of the TB and TC;as well as the perAll value of the TC;and the texture parameters(TB/TC-CON;TB/TC-ASM;TB/TC-ENT;and TB/TC-MEAN)between the TB and TC.Additionally;there were differences in the overall correlation of the TB and TC be-tween the two groups.Objective tongue diagnosis indicators can effectively assist in the diag-nosis of benign lung nodules and lung cancer;thereby providing a scientific basis for the ear-ly detection;diagnosis;and treatment of lung cancer.
文摘Understanding metal accumulation at organ level in roots, leaves and seeds in O. glaberrima (OG) is crucial for improving physiological and metabolic aspects in growing Asian and African rice in salted areas. The micro-analytical imaging techniques are required to reveal its accumulation and distribution within plant tissues. PIXE studies have been performed to determine different elements in rice plants. The existing microbeam analytical technique at the iThemba LABS will be applied for the 2D image mapping of fresh rice tissues to perform a concentration of low atomic mass elements (such as Al, Si, P, S, Cl, Ca, Ti, Mn, Fe, Cu, Br, Zn and K) with detection limits of typically 1-10 μg/g. Comparison of the distribution of the elements between leaves, root and seed samples using uptake and distribution of elements in particular environmental conditions with potential amount of salt in water have been performed. We are also expecting to indicate metal exclusion as salt tolerance strategies from leaves, root, and seed compartments using matrix correlation between samples and between elements on rice species.
文摘Serial remote sensing images offer a valuable means of tracking the evolutionary changes and growth of a specific geographical area over time.Although the original images may provide limited insights,they harbor considerable potential for identifying clusters and patterns.The aggregation of these serial remote sensing images(SRSI)becomes increasingly viable as distinct patterns emerge in diverse scenarios,such as suburbanization,the expansion of native flora,and agricultural activities.In a novel approach,we propose an innovative method for extracting sequential patterns by combining Ant Colony Optimization(ACD)and Empirical Mode Decomposition(EMD).This integration of the newly developed EMD and ACO techniques proves remarkably effective in identifying the most significant characteristic features within serial remote sensing images,guided by specific criteria.Our findings highlight a substantial improvement in the efficiency of sequential pattern mining through the application of this unique hybrid method,seamlessly integrating EMD and ACO for feature selection.This study exposes the potential of our innovative methodology,particularly in the realms of urbanization,native vegetation expansion,and agricultural activities.
基金supported by the National Key Research and Development Program of China(No.2022YFC3204301).
文摘Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological protection and sustainable development.In this study,the trend of erosion-deposition evolution in the Qingshuigou was investigated based on 38 coastline phases extracted from Landsat series images of the YRD at one-year intervals from 1984 to 2021.The periodicity of the scouring and deposition evolution was also analyzed using wavelet analysis.Results showed that the total area of the Qingshuigou was affected by deposition and erosion and that the fluctuation first increased and then decreased.The total area reached a maximum in 1993.The depositional area first increased and then decreased,whereas the overall erosion area decreased.Deposition and erosion areas showed periodic changes to some extent;however,the periodic signal intensity decreased.Furthermore,factors including channel morphological evolution and variations in water and sediment discharge affect the spatiotemporal dynamics of erosion and deposition processes.The application of nonconsistency tests finally revealed that deposition area and flushing magnitude exhibited non-stationarities,which are potentially attributed to impacts from climatic change drivers.
文摘Purpose: This review examines the diagnostic value of transvaginal 3D ultrasound image texture analysis for the diagnosis of uterine adhesions. Materials and Methods: The total clinical data of 53 patients with uterine adhesions diagnosed by hysteroscopy and the imaging data of transvaginal three-dimensional ultrasound from the Second Affiliated Hospital of Chongqing Medical University from June 2022 to August 2023 were retrospectively analysed. Based on hysteroscopic surgical records, patients were divided into two independent groups: normal endometrium and uterine adhesion sites. The samples were divided into a training set and a test set, and the transvaginal 3D ultrasound was used to outline the region of interest (ROI) and extract texture features for normal endometrium and uterine adhesions based on hysteroscopic surgical recordings, the training set data were feature screened and modelled using lasso regression and cross-validation, and the diagnostic efficacy of the model was assessed by applying the subjects’ operating characteristic (ROC) curves. Results: For each group, 290 texture feature parameters were extracted and three higher values were screened out, and the area under the curve of the constructed ultrasonographic scoring model was 0.658 and 0.720 in the training and test sets, respectively. Conclusion Relative clinical value of transvaginal three-dimensional ultrasound image texture analysis for the diagnosis of uterine adhesions.
文摘Health care is an important part of human life and is a right for everyone. One of the most basic human rights is to receive health care whenever they need it. However, this is simply not an option for everyone due to the social conditions in which some communities live and not everyone has access to it. This paper aims to serve as a reference point and guide for users who are interested in monitoring their health, particularly their blood analysis to be aware of their health condition in an easy way. This study introduces an algorithmic approach for extracting and analyzing Complete Blood Count (CBC) parameters from scanned images. The algorithm employs Optical Character Recognition (OCR) technology to process images containing tabular data, specifically targeting CBC parameter tables. Upon image processing, the algorithm extracts data and identifies CBC parameters and their corresponding values. It evaluates the status (High, Low, or Normal) of each parameter and subsequently presents evaluations, and any potential diagnoses. The primary objective is to automate the extraction and evaluation of CBC parameters, aiding healthcare professionals in swiftly assessing blood analysis results. The algorithmic framework aims to streamline the interpretation of CBC tests, potentially improving efficiency and accuracy in clinical diagnostics.
文摘The development of artificial intelligence (AI), particularly deep learning, has made it possible to accelerate and improve the processing of data collected in different fields (commerce, medicine, surveillance or security, agriculture, etc.). Most related works use open source consistent image databases. This is the case for ImageNet reference data such as coco data, IP102, CIFAR-10, STL-10 and many others with variability representatives. The consistency of its images contributes to the spectacular results observed in its fields with deep learning. The application of deep learning which is making its debut in geology does not, to our knowledge, include a database of microscopic images of thin sections of open source rock minerals. In this paper, we evaluate three optimizers under the AlexNet architecture to check whether our acquired mineral images have object features or patterns that are clear and distinct to be extracted by a neural network. These are thin sections of magmatic rocks (biotite and 2-mica granite, granodiorite, simple granite, dolerite, charnokite and gabbros, etc.) which served as support. We use two hyper-parameters: the number of epochs to perform complete rounds on the entire data set and the “learning rate” to indicate how quickly the weights in the network will be modified during optimization. Using Transfer Learning, the three (3) optimizers all based on the gradient descent methods of Stochastic Momentum Gradient Descent (sgdm), Root Mean Square Propagation (RMSprop) algorithm and Adaptive Estimation of moment (Adam) achieved better performance. The recorded results indicate that the Momentum optimizer achieved the best scores respectively of 96.2% with a learning step set to 10−3 for a fixed choice of 350 epochs during this variation and 96, 7% over 300 epochs for the same value of the learning step. This performance is expected to provide excellent insight into image quality for future studies. Then they participate in the development of an intelligent system for the identification and classification of minerals, seven (7) in total (quartz, biotite, amphibole, plagioclase, feldspar, muscovite, pyroxene) and rocks.
文摘Large language models(LLMs),such as ChatGPT developed by OpenAI,represent a significant advancement in artificial intelligence(AI),designed to understand,generate,and interpret human language by analyzing extensive text data.Their potential integration into clinical settings offers a promising avenue that could transform clinical diagnosis and decision-making processes in the future(Thirunavukarasu et al.,2023).This article aims to provide an in-depth analysis of LLMs’current and potential impact on clinical practices.Their ability to generate differential diagnosis lists underscores their potential as invaluable tools in medical practice and education(Hirosawa et al.,2023;Koga et al.,2023).
文摘Android smartphones largely dominate the smartphone market. For this reason, it is very important to examine these smartphones in terms of digital forensics since they are often used as evidence in trials. It is possible to acquire a physical or logical image of these devices. Acquiring physical and logical images has advantages and disadvantages compared to each other. Creating the logical image is done at the file system level. Analysis can be made on this logical image. Both logical image acquisition and analysis of the image can be done by software tools. In this study, the differences between logical image and physical image acquisition in Android smartphones, their advantages and disadvantages compared to each other, the difficulties that may be encountered in obtaining physical images, which type of image contributes to obtaining more useful and effective data, which one should be preferred for different conditions, and the benefits of having root authority are discussed. The practice of getting the logical image of the Android smartphones and making an analysis on the image is also included. Although root privileges are not required for logical image acquisition, it has been observed that very limited data will be obtained with the logical image created without root privileges. Nevertheless, logical image acquisition has advantages too against physical image acquisition.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
文摘This editorial examines a recent study that used radiomics based on computed tomography(CT)to predict the expression of the fibroblast-related gene enhancer of zeste homolog 2(EZH2)and its correlation with the survival of patients with hepatocellular carcinoma(HCC).By integrating radiomics with molecular analysis,the study presented a strategy for accurately predicting the expression of EZH2 from CT scans.The findings demonstrated a strong link between the radiomics model,EZH2 expression,and patient prognosis.This noninvasive approach provides valuable insights into the therapeutic management of HCC.
文摘Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Calligraphy and seal engraving,as two closely related systems in traditional Chinese art,have developed through the ages.Due to changes in lifestyle and advancements in modern technology,their original functions of daily writing and verification have gradually diminished.Instead,they have increasingly played a significant role in commercial art.This study utilizes the Evaluation Grid Method(EGM)and the Analytic Hierarchy Process(AHP)to research the key preference factors in the application of calligraphy and seal engraving imagery.Different from the traditional 5-point equal interval semantic questionnaire,this study employs a non-equal interval semantic questionnaire with a golden ratio scale,distinguishing the importance ratio of adjacent semantic meanings and highlighting the weighted emphasis on visual aesthetics.Additionally,the study uses Importance-Performance Analysis(IPA)and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)to obtain the key preference sequence of calligraphy and seal engraving culture.Plus,the Choquet integral comprehensive evaluation is used as a reference for IPA comparison.It is hoped that this study can provide cultural imagery references and research methods,injecting further creativity into industrial design.
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
基金Projects(50934002,51074013,51304076,51104100)supported by the National Natural Science Foundation of ChinaProject(IRT0950)supported by the Program for Changjiang Scholars Innovative Research Team in Universities,ChinaProject(2012M510007)supported by China Postdoctoral Science Foundation
文摘Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.
文摘To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.
基金The National Natural Science Foundation of China (No.10872139)
文摘The aim is to establish an automatic system to analyze the maneuver performance of fish. A high speed camera (1 000 frame/s) is employed to record fast-start maneuver. Three steps are taken to analyze the kinematics: first, the midline in the first image is partitioned into equal interval lengths and the coordinates of all inter segmental points are saved. Secondly, these points coordinates are searched in the next frame with the digital image correlation (DIC) method, then these points are fitted with a spline curve function. Repeat this step until all the midlines are figured out frame by frame. Finally, according to the variety of midlines, the kinematics of the fast-start is calculated. Using this system to test carp C-start, the duration is divided into two stages: stage 1 is defined as the formation of the C shape and stage 2 as the return flip of the tail followed with forward motion. By tracing the middle line, the kinematic parameters of turning rate, centre of mass (CM) turning rate, CM turning radius, etc. are obtained.
文摘In order to realize the detection and analysis of microalgae in sediment samples with complex scenes, the project takes advantage of the character of microalgae that they can auto-fluoresce when exposed to the illumination of certain exciation waves. The project takes grey-scale and fluorescent pictures of microalgae in the same field of view and uses the image processing technique to deal with the images, such as threshold segmentation, contour and texture analysis and pattern recognition. The results show that the fluorescent image can effectively elimate the yawp in the complex background and make the consequent image processing more effective and easy. Then the project comes to the conclusion that fluorescence-assisted image processing can realize the detection and analysis of microalgae in sediment samples containing complex scenes.