In recent times,an image enhancement approach,which learns the global transformation function using deep neural networks,has gained attention.However,many existing methods based on this approach have a limitation:thei...In recent times,an image enhancement approach,which learns the global transformation function using deep neural networks,has gained attention.However,many existing methods based on this approach have a limitation:their transformation functions are too simple to imitate complex colour transformations between low-quality images and manually retouched high-quality images.In order to address this limitation,a simple yet effective approach for image enhancement is proposed.The proposed algorithm based on the channel-wise intensity transformation is designed.However,this transformation is applied to the learnt embedding space instead of specific colour spaces and then return enhanced features to colours.To this end,the authors define the continuous intensity transformation(CIT)to describe the mapping between input and output intensities on the embedding space.Then,the enhancement network is developed,which produces multi-scale feature maps from input images,derives the set of transformation functions,and performs the CIT to obtain enhanced images.Extensive experiments on the MIT-Adobe 5K dataset demonstrate that the authors’approach improves the performance of conventional intensity transforms on colour space metrics.Specifically,the authors achieved a 3.8%improvement in peak signal-to-noise ratio,a 1.8%improvement in structual similarity index measure,and a 27.5%improvement in learned perceptual image patch similarity.Also,the authors’algorithm outperforms state-of-the-art alternatives on three image enhancement datasets:MIT-Adobe 5K,Low-Light,and Google HDRþ.展开更多
Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color...Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color correction and detail restoration. However,the existing enhancement algorithms cannot achieve the desired results. In order to solve the above problems, this paper proposes a multi-stream feature fusion network. First, an underwater image is preprocessed to obtain potential information from the illumination stream, color stream and structure stream by histogram equalization with contrast limitation, gamma correction and white balance, respectively. Next, these three streams and the original raw stream are sent to the residual blocks to extract the features. The features will be subsequently fused. It can enhance feature representation in underwater images. In the meantime, a composite loss function including three terms is used to ensure the quality of the enhanced image from the three aspects of color balance, structure preservation and image smoothness. Therefore, the enhanced image is more in line with human visual perception.Finally, the effectiveness of the proposed method is verified by comparison experiments with many stateof-the-art underwater image enhancement algorithms. Experimental results show that the proposed method provides superior results over them in terms of MSE,PSNR, SSIM, UIQM and UCIQE, and the enhanced images are more similar to their ground truth images.展开更多
Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image qual...Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image quality of handheld ultrasound devices is not always satisfactory due to the limited equipment size,which hinders accurate diagnoses by doctors.At the same time,paired ultrasound images are difficult to obtain from the clinic because imaging process is complicated.Therefore,we propose a modified cycle generative adversarial network(cycleGAN) for ultrasound image enhancement from multiple organs via unpaired pre-training.We introduce an ultrasound image pre-training method that does not require paired images,alleviating the requirement for large-scale paired datasets.We also propose an enhanced block with different structures in the pre-training and fine-tuning phases,which can help achieve the goals of different training phases.To improve the robustness of the model,we add Gaussian noise to the training images as data augmentation.Our approach is effective in obtaining the best quantitative evaluation results using a small number of parameters and less training costs to improve the quality of handheld ultrasound devices.展开更多
Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ign...Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ignored that the R,G and B channels of underwater degraded images present varied degrees of degradation,due to the selective absorption for the light.To address this issue,we propose an unsupervised multi-expert learning model by considering the enhancement of each color channel.Specifically,an unsupervised architecture based on generative adversarial network is employed to alleviate the need for paired underwater images.Based on this,we design a generator,including a multi-expert encoder,a feature fusion module and a feature fusion-guided decoder,to generate the clear underwater image.Accordingly,a multi-expert discriminator is proposed to verify the authenticity of the R,G and B channels,respectively.In addition,content perceptual loss and edge loss are introduced into the loss function to further improve the content and details of the enhanced images.Extensive experiments on public datasets demonstrate that our method achieves more pleasing results in vision quality.Various metrics(PSNR,SSIM,UIQM and UCIQE) evaluated on our enhanced images have been improved obviously.展开更多
Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but ...Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but the collection of suitable normal-light images is difficult.In contrast,a self-supervised method breaks free from the reliance on normal-light data,resulting in more convenience and better generalization.Existing self-supervised methods primarily focus on illumination adjustment and design pixel-based adjustment methods,resulting in remnants of other degradations,uneven brightness and artifacts.In response,this paper proposes a self-supervised enhancement method,termed as SLIE.It can handle multiple degradations including illumination attenuation,noise pollution,and color shift,all in a self-supervised manner.Illumination attenuation is estimated based on physical principles and local neighborhood information.The removal and correction of noise and color shift removal are solely realized with noisy images and images with color shifts.Finally,the comprehensive and fully self-supervised approach can achieve better adaptability and generalization.It is applicable to various low light conditions,and can reproduce the original color of scenes in natural light.Extensive experiments conducted on four public datasets demonstrate the superiority of SLIE to thirteen state-of-the-art methods.Our code is available at https://github.com/hanna-xu/SLIE.展开更多
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea...In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.展开更多
The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivot...The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.展开更多
Digital watermarking technology is adequate for copyright protection and content authentication.There needs to be more research on the watermarking algorithm after printing and scanning.Aiming at the problem that exis...Digital watermarking technology is adequate for copyright protection and content authentication.There needs to be more research on the watermarking algorithm after printing and scanning.Aiming at the problem that existing anti-print scanning text image watermarking algorithms cannot take into account the invisibility and robustness of the watermark,an anti-print scanning watermarking algorithm suitable for text images is proposed.This algorithm first performs a series of image enhancement preprocessing operations on the printed scanned image to eliminate the interference of incorrect bit information on watermark embedding and then uses a combination of Discrete Wavelet Transform(DWT)-Singular Value Decomposition(SVD)to embed the watermark.Experiments show that the average Normalized Correlation(NC)of the watermark extracted by this algorithm against attacks such as Joint Photographic Experts Group(JPEG)compression,JPEG2000 compression,and print scanning is above 0.93.Especially,the average NC of the watermark extracted after print scanning attacks is greater than 0.964,and the average Bit Error Ratio(BER)is 5.15%.This indicates that this algorithm has strong resistance to various attacks and print scanning attacks and can better take into account the invisibility of the watermark.展开更多
A method to remove stripes from remote sensing images is proposed based on statistics and a new image enhancement method.The overall processing steps for improving the quality of remote sensing images are introduced t...A method to remove stripes from remote sensing images is proposed based on statistics and a new image enhancement method.The overall processing steps for improving the quality of remote sensing images are introduced to provide a general baseline.Due to the differences in satellite sensors when producing images,subtle but inherent stripes can appear at the stitching positions between the sensors.These stitchingstripes cannot be eliminated by conventional relative radiometric calibration.The inherent stitching stripes cause difficulties in downstream tasks such as the segmentation,classification and interpretation of remote sensing images.Therefore,a method to remove the stripes based on statistics and a new image enhancement approach are proposed in this paper.First,the inconsistency in grayscales around stripes is eliminated with the statistical method.Second,the pixels within stripes are weighted and averaged based on updated pixel values to enhance the uniformity of the overall image radiation quality.Finally,the details of the images are highlighted by a new image enhancement method,which makes the whole image clearer.Comprehensive experiments are performed,and the results indicate that the proposed method outperforms the baseline approach in terms of visual quality and radiation correction accuracy.展开更多
Aiming at the scattering and absorption of light in the water body,which causes the problems of color shift,uneven brightness,poor sharpness and missing details in the acquired underwater images,an underwater image en...Aiming at the scattering and absorption of light in the water body,which causes the problems of color shift,uneven brightness,poor sharpness and missing details in the acquired underwater images,an underwater image enhancement algorithm based on IMSRCR and CLAHE-WGIF is proposed.Firstly,the IMSRCR algorithm proposed in this paper is used to process the original underwater image with adaptive color shift correction;secondly,the image is converted to HSV color space,and the segmentation exponential algorithm is used to process the S component to enhance the image saturation;finally,multi-scale Retinex is used to decompose the V component image into detail layer and base layer,and adaptive two-dimensional gamma correction is made to the base layer to adjust the brightness unevenness,while the detail layer is processed by CLAHE-WGIF algorithm to enhance the image contrast and detail information.The experimental results show that our algorithm has some advantages over existing algorithms in both subjective and objective evaluations,and the information entropy of the image is improved by 6.3%on average,and the UIQM and UCIQE indexes are improved by 12.9%and 20.3%on average.展开更多
The current study provides a quantum calculus-based medical image enhancement technique that dynamically chooses the spatial distribution of image pixel intensity values.The technique focuses on boosting the edges and...The current study provides a quantum calculus-based medical image enhancement technique that dynamically chooses the spatial distribution of image pixel intensity values.The technique focuses on boosting the edges and texture of an image while leaving the smooth areas alone.The brain Magnetic Resonance Imaging(MRI)scans are used to visualize the tumors that have spread throughout the brain in order to gain a better understanding of the stage of brain cancer.Accurately detecting brain cancer is a complex challenge that the medical system faces when diagnosing the disease.To solve this issue,this research offers a quantum calculus-based MRI image enhancement as a pre-processing step for brain cancer diagnosis.The proposed image enhancement approach improves images with low gray level changes by estimating the pixel’s quantum probability.The suggested image enhancement technique is demonstrated to be robust and resistant to major quality changes on a variety ofMRIscan datasets of variable quality.ForMRI scans,the BRISQUE“blind/referenceless image spatial quality evaluator”and the NIQE“natural image quality evaluator”measures were 39.38 and 3.58,respectively.The proposed image enhancement model,according to the data,produces the best image quality ratings,and it may be able to aid medical experts in the diagnosis process.The experimental results were achieved using a publicly available collection of MRI scans.展开更多
Low-light image enhancement methods have limitations in addressing issues such as color distortion,lack of vibrancy,and uneven light distribution and often require paired training data.To address these issues,we propo...Low-light image enhancement methods have limitations in addressing issues such as color distortion,lack of vibrancy,and uneven light distribution and often require paired training data.To address these issues,we propose a two-stage unsupervised low-light image enhancement algorithm called Retinex and Exposure Fusion Network(RFNet),which can overcome the problems of over-enhancement of the high dynamic range and under-enhancement of the low dynamic range in existing enhancement algorithms.This algorithm can better manage the challenges brought about by complex environments in real-world scenarios by training with unpaired low-light images and regular-light images.In the first stage,we design a multi-scale feature extraction module based on Retinex theory,capable of extracting details and structural information at different scales to generate high-quality illumination and reflection images.In the second stage,an exposure image generator is designed through the camera response mechanism function to acquire exposure images containing more dark features,and the generated images are fused with the original input images to complete the low-light image enhancement.Experiments show the effectiveness and rationality of each module designed in this paper.And the method reconstructs the details of contrast and color distribution,outperforms the current state-of-the-art methods in both qualitative and quantitative metrics,and shows excellent performance in the real world.展开更多
In this paper,we propose an end-to-end cross-layer gated attention network(CLGA-Net)to directly restore fog-free images.Compared with the previous dehazing network,the dehazing model presented in this paper uses the s...In this paper,we propose an end-to-end cross-layer gated attention network(CLGA-Net)to directly restore fog-free images.Compared with the previous dehazing network,the dehazing model presented in this paper uses the smooth cavity convolution and local residual module as the feature extractor,combined with the channel attention mechanism,to better extract the restored features.A large amount of experimental data proves that the defogging model proposed in this paper is superior to previous defogging technologies in terms of structure similarity index(SSIM),peak signal to noise ratio(PSNR)and subjective visual quality.In order to improve the efficiency of decoding and encoding,we also describe a fusion residualmodule and conduct ablation experiments,which prove that the fusion residual is suitable for the dehazing problem.Therefore,we use fusion residual as a fixed module for encoding and decoding.In addition,we found that the traditional defogging model based on the U-net network may cause some information losses in space.We have achieved effective maintenance of low-level feature information through the cross-layer gating structure that better takes into account global and subtle features.We also present the application of our CLGA-Net in challenging scenarios where the best results in both quantity and quality can be obtained.Experimental results indicate that the present cross-layer gating module can be widely used in the same type of network.展开更多
Image dehazing is a rapidly progressing research concept to enhance image contrast and resolution in computer vision applications.Owing to severe air dispersion,fog,and haze over the environment,hazy images pose speci...Image dehazing is a rapidly progressing research concept to enhance image contrast and resolution in computer vision applications.Owing to severe air dispersion,fog,and haze over the environment,hazy images pose specific challenges during information retrieval.With the advances in the learning theory,most of the learning-based techniques,in particular,deep neural networks are used for single-image dehazing.The existing approaches are extremely computationally complex,and the dehazed images are suffered from color distortion caused by the over-saturation and pseudo-shadow phenomenon.However,the slow convergence rate during training and haze residual is the two demerits in the conventional image dehazing networks.This article proposes a new architecture“Atrous Convolution-based Residual Deep Convolutional Neural Network(CNN)”method with hybrid Spider Monkey-Particle Swarm Optimization for image dehazing.The large receptive field of atrous convolution extracts the global contextual information.The swarm based hybrid optimization is designed for tuning the neural network parameters during training.The experiments over the standard synthetic dataset images used in the proposed network recover clear output images free from distortion and halo effects.It is observed from the statistical analysis that Mean Square Error(MSE)decreases from 74.42 to 62.03 and Peak Signal to Noise Ratio(PSNR)increases from 22.53 to 28.82.The proposed method with hybrid optimization algorithm demonstrates a superior convergence rate and is a more robust than the current state-of-the-art techniques.展开更多
In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization tec...In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement.展开更多
Images captured in hazy or foggy weather conditions can be seriously degraded by scattering of atmospheric particles,which reduces the contrast,changes the color,and makes the object features difficult to identify by ...Images captured in hazy or foggy weather conditions can be seriously degraded by scattering of atmospheric particles,which reduces the contrast,changes the color,and makes the object features difficult to identify by human vision and by some outdoor computer vision systems.Therefore image dehazing is an important issue and has been widely researched in the field of computer vision.The role of image dehazing is to remove the influence of weather factors in order to improve the visual effects of the image and provide benefit to post-processing.This paper reviews the main techniques of image dehazing that have been developed over the past decade.Firstly,we innovatively divide a number of approaches into three categories:image enhancement based methods,image fusion based methods and image restoration based methods.All methods are analyzed and corresponding sub-categories are introduced according to principles and characteristics.Various quality evaluation methods are then described,sorted and discussed in detail.Finally,research progress is summarized and future research directions are suggested.展开更多
Underwater imaging posts a challenge due to the degradation by the absorption and scattering occurred during light propagation as well as poor lighting conditions in water medium Although image filtering techniques ar...Underwater imaging posts a challenge due to the degradation by the absorption and scattering occurred during light propagation as well as poor lighting conditions in water medium Although image filtering techniques are utilized to improve image quality effectively, problems of the distortion of image details and the bias of color correction still exist in output images due to the complexity of image texture distribution. This paper proposes a new underwater image enhancement method based on image struc- tural decomposition. By introducing a curvature factor into the Mumford_Shah_G decomposition algorithm, image details and struc- ture components are better preserved without the gradient effect. Thus, histogram equalization and Retinex algorithms are applied in the decomposed structure component for global image enhancement and non-uniform brightness correction for gray level and the color images, then the optical absorption spectrum in water medium is incorporate to improve the color correction. Finally, the en- hauced structure and preserved detail component are re.composed to generate the output. Experiments with real underwater images verify the image improvement by the proposed method in image contrast, brightness and color fidelity.展开更多
Abstract: Based on digital signal processor(DSP) and field programmable gate array(FPGA) techniques, the architecture of super large view field(SLVF) panoramic night vision image processing hardware platform wa...Abstract: Based on digital signal processor(DSP) and field programmable gate array(FPGA) techniques, the architecture of super large view field(SLVF) panoramic night vision image processing hardware platform was established. The panoramic unwrapping and correcting algorithm, up to a full 360°, based on coordinate rotation digital computer (CORDIC) and night vision image enhancement algorithm, based on histogram equalization theory and edge detection theory, was presented in this paper, with the purpose of processing night vision dynamic panoramic annular image. The annular image can be unwrapped and corrected to conventional rectangular panorama by the panoramic image processing algorithm, which uses the pipelined CORDIC configuration to realize a trigonometric function generator with high speed and high precision. Histogram equalization algorithm can perfectly enhance the contrast of the night vision image. Edge detection algorithm can be propitious to find and detect small dim dynamic targets in night vision circumstances. After abundant experiment, the al- gorithm for panoramic image processing and night vision image enhancement is successfully implemented in FPGA and DSP. The panoramic night vision image system is a compact device, with no external rotating parts. And the system can reliably and dynamically detect 360* SLVF panoramic night vision image.展开更多
To overcome the shortcomings of the Lee image enhancement algorithm and its improvement based on the logarithmic image processing(LIP) model, this paper proposes what we believe to be an effective image enhancement al...To overcome the shortcomings of the Lee image enhancement algorithm and its improvement based on the logarithmic image processing(LIP) model, this paper proposes what we believe to be an effective image enhancement algorithm. This algorithm introduces fuzzy entropy, makes full use of neighborhood information, fuzzy information and human visual characteristics.To enhance an image, this paper first carries out the reasonable fuzzy-3 partition of its histogram into the dark region, intermediate region and bright region. It then extracts the statistical characteristics of the three regions and adaptively selects the parameter αaccording to the statistical characteristics of the image’s gray-scale values. It also adds a useful nonlinear transform, thus increasing the ubiquity of the algorithm. Finally, the causes for the gray-scale value overcorrection that occurs in the traditional image enhancement algorithms are analyzed and their solutions are proposed.The simulation results show that our image enhancement algorithm can effectively suppress the noise of an image, enhance its contrast and visual effect, sharpen its edge and adjust its dynamic range.展开更多
Froth image could strongly indicate the production status in mineral flotation process.Considering low contrast and sensitivity to noises and illumination of froth images in flotation cells,an improved image enhanceme...Froth image could strongly indicate the production status in mineral flotation process.Considering low contrast and sensitivity to noises and illumination of froth images in flotation cells,an improved image enhancement algorithm based on nonsubsampled contourlet transform (NSCT) and multiscale Retinex algorithm has been proposed.Nonsubsampled contourlet transform was firstly adopted to decompose the flotation froth images,ensure signals invariance and avoid the blurring edge.Secondly,a multiscale Retinex algorithm was used to enhance the lower frequency image and improve the brightness uniformity.Adaptive classification method based on Bayes atrophy threshold was proposed to eliminate noise,preserve strong edges,and enhance weak edges of band-pass sub-band images.Experiment shows that the proposed method could enhance the edge,contour,details and curb noise,and improve visual effects.Under-segmentation caused by noise and blurring edge has been solved,which lays a foundation for extracting foamy morphological flotation froth and analyzing grade.展开更多
基金National Research Foundation of Korea,Grant/Award Numbers:2022R1I1A3069113,RS-2023-00221365Electronics and Telecommunications Research Institute,Grant/Award Number:2014-3-00123。
文摘In recent times,an image enhancement approach,which learns the global transformation function using deep neural networks,has gained attention.However,many existing methods based on this approach have a limitation:their transformation functions are too simple to imitate complex colour transformations between low-quality images and manually retouched high-quality images.In order to address this limitation,a simple yet effective approach for image enhancement is proposed.The proposed algorithm based on the channel-wise intensity transformation is designed.However,this transformation is applied to the learnt embedding space instead of specific colour spaces and then return enhanced features to colours.To this end,the authors define the continuous intensity transformation(CIT)to describe the mapping between input and output intensities on the embedding space.Then,the enhancement network is developed,which produces multi-scale feature maps from input images,derives the set of transformation functions,and performs the CIT to obtain enhanced images.Extensive experiments on the MIT-Adobe 5K dataset demonstrate that the authors’approach improves the performance of conventional intensity transforms on colour space metrics.Specifically,the authors achieved a 3.8%improvement in peak signal-to-noise ratio,a 1.8%improvement in structual similarity index measure,and a 27.5%improvement in learned perceptual image patch similarity.Also,the authors’algorithm outperforms state-of-the-art alternatives on three image enhancement datasets:MIT-Adobe 5K,Low-Light,and Google HDRþ.
基金supported by the national key research and development program (No.2020YFB1806608)Jiangsu natural science foundation for distinguished young scholars (No.BK20220054)。
文摘Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color correction and detail restoration. However,the existing enhancement algorithms cannot achieve the desired results. In order to solve the above problems, this paper proposes a multi-stream feature fusion network. First, an underwater image is preprocessed to obtain potential information from the illumination stream, color stream and structure stream by histogram equalization with contrast limitation, gamma correction and white balance, respectively. Next, these three streams and the original raw stream are sent to the residual blocks to extract the features. The features will be subsequently fused. It can enhance feature representation in underwater images. In the meantime, a composite loss function including three terms is used to ensure the quality of the enhanced image from the three aspects of color balance, structure preservation and image smoothness. Therefore, the enhanced image is more in line with human visual perception.Finally, the effectiveness of the proposed method is verified by comparison experiments with many stateof-the-art underwater image enhancement algorithms. Experimental results show that the proposed method provides superior results over them in terms of MSE,PSNR, SSIM, UIQM and UCIQE, and the enhanced images are more similar to their ground truth images.
文摘Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image quality of handheld ultrasound devices is not always satisfactory due to the limited equipment size,which hinders accurate diagnoses by doctors.At the same time,paired ultrasound images are difficult to obtain from the clinic because imaging process is complicated.Therefore,we propose a modified cycle generative adversarial network(cycleGAN) for ultrasound image enhancement from multiple organs via unpaired pre-training.We introduce an ultrasound image pre-training method that does not require paired images,alleviating the requirement for large-scale paired datasets.We also propose an enhanced block with different structures in the pre-training and fine-tuning phases,which can help achieve the goals of different training phases.To improve the robustness of the model,we add Gaussian noise to the training images as data augmentation.Our approach is effective in obtaining the best quantitative evaluation results using a small number of parameters and less training costs to improve the quality of handheld ultrasound devices.
基金supported in part by the National Key Research and Development Program of China(2020YFB1313002)the National Natural Science Foundation of China(62276023,U22B2055,62222302,U2013202)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-22-003C1)the Postgraduate Education Reform Project of Henan Province(2021SJGLX260Y)。
文摘Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ignored that the R,G and B channels of underwater degraded images present varied degrees of degradation,due to the selective absorption for the light.To address this issue,we propose an unsupervised multi-expert learning model by considering the enhancement of each color channel.Specifically,an unsupervised architecture based on generative adversarial network is employed to alleviate the need for paired underwater images.Based on this,we design a generator,including a multi-expert encoder,a feature fusion module and a feature fusion-guided decoder,to generate the clear underwater image.Accordingly,a multi-expert discriminator is proposed to verify the authenticity of the R,G and B channels,respectively.In addition,content perceptual loss and edge loss are introduced into the loss function to further improve the content and details of the enhanced images.Extensive experiments on public datasets demonstrate that our method achieves more pleasing results in vision quality.Various metrics(PSNR,SSIM,UIQM and UCIQE) evaluated on our enhanced images have been improved obviously.
基金supported by the National Natural Science Foundation of China(62276192)。
文摘Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but the collection of suitable normal-light images is difficult.In contrast,a self-supervised method breaks free from the reliance on normal-light data,resulting in more convenience and better generalization.Existing self-supervised methods primarily focus on illumination adjustment and design pixel-based adjustment methods,resulting in remnants of other degradations,uneven brightness and artifacts.In response,this paper proposes a self-supervised enhancement method,termed as SLIE.It can handle multiple degradations including illumination attenuation,noise pollution,and color shift,all in a self-supervised manner.Illumination attenuation is estimated based on physical principles and local neighborhood information.The removal and correction of noise and color shift removal are solely realized with noisy images and images with color shifts.Finally,the comprehensive and fully self-supervised approach can achieve better adaptability and generalization.It is applicable to various low light conditions,and can reproduce the original color of scenes in natural light.Extensive experiments conducted on four public datasets demonstrate the superiority of SLIE to thirteen state-of-the-art methods.Our code is available at https://github.com/hanna-xu/SLIE.
文摘In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.
基金This project is supported by the National Natural Science Foundation of China(NSFC)(No.61902158).
文摘The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.
基金sponsored by the National Natural Science Foundation of China under Grants 61972207,U1836208,U1836110,61672290,and the Project was through the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institution.
文摘Digital watermarking technology is adequate for copyright protection and content authentication.There needs to be more research on the watermarking algorithm after printing and scanning.Aiming at the problem that existing anti-print scanning text image watermarking algorithms cannot take into account the invisibility and robustness of the watermark,an anti-print scanning watermarking algorithm suitable for text images is proposed.This algorithm first performs a series of image enhancement preprocessing operations on the printed scanned image to eliminate the interference of incorrect bit information on watermark embedding and then uses a combination of Discrete Wavelet Transform(DWT)-Singular Value Decomposition(SVD)to embed the watermark.Experiments show that the average Normalized Correlation(NC)of the watermark extracted by this algorithm against attacks such as Joint Photographic Experts Group(JPEG)compression,JPEG2000 compression,and print scanning is above 0.93.Especially,the average NC of the watermark extracted after print scanning attacks is greater than 0.964,and the average Bit Error Ratio(BER)is 5.15%.This indicates that this algorithm has strong resistance to various attacks and print scanning attacks and can better take into account the invisibility of the watermark.
文摘A method to remove stripes from remote sensing images is proposed based on statistics and a new image enhancement method.The overall processing steps for improving the quality of remote sensing images are introduced to provide a general baseline.Due to the differences in satellite sensors when producing images,subtle but inherent stripes can appear at the stitching positions between the sensors.These stitchingstripes cannot be eliminated by conventional relative radiometric calibration.The inherent stitching stripes cause difficulties in downstream tasks such as the segmentation,classification and interpretation of remote sensing images.Therefore,a method to remove the stripes based on statistics and a new image enhancement approach are proposed in this paper.First,the inconsistency in grayscales around stripes is eliminated with the statistical method.Second,the pixels within stripes are weighted and averaged based on updated pixel values to enhance the uniformity of the overall image radiation quality.Finally,the details of the images are highlighted by a new image enhancement method,which makes the whole image clearer.Comprehensive experiments are performed,and the results indicate that the proposed method outperforms the baseline approach in terms of visual quality and radiation correction accuracy.
文摘Aiming at the scattering and absorption of light in the water body,which causes the problems of color shift,uneven brightness,poor sharpness and missing details in the acquired underwater images,an underwater image enhancement algorithm based on IMSRCR and CLAHE-WGIF is proposed.Firstly,the IMSRCR algorithm proposed in this paper is used to process the original underwater image with adaptive color shift correction;secondly,the image is converted to HSV color space,and the segmentation exponential algorithm is used to process the S component to enhance the image saturation;finally,multi-scale Retinex is used to decompose the V component image into detail layer and base layer,and adaptive two-dimensional gamma correction is made to the base layer to adjust the brightness unevenness,while the detail layer is processed by CLAHE-WGIF algorithm to enhance the image contrast and detail information.The experimental results show that our algorithm has some advantages over existing algorithms in both subjective and objective evaluations,and the information entropy of the image is improved by 6.3%on average,and the UIQM and UCIQE indexes are improved by 12.9%and 20.3%on average.
文摘The current study provides a quantum calculus-based medical image enhancement technique that dynamically chooses the spatial distribution of image pixel intensity values.The technique focuses on boosting the edges and texture of an image while leaving the smooth areas alone.The brain Magnetic Resonance Imaging(MRI)scans are used to visualize the tumors that have spread throughout the brain in order to gain a better understanding of the stage of brain cancer.Accurately detecting brain cancer is a complex challenge that the medical system faces when diagnosing the disease.To solve this issue,this research offers a quantum calculus-based MRI image enhancement as a pre-processing step for brain cancer diagnosis.The proposed image enhancement approach improves images with low gray level changes by estimating the pixel’s quantum probability.The suggested image enhancement technique is demonstrated to be robust and resistant to major quality changes on a variety ofMRIscan datasets of variable quality.ForMRI scans,the BRISQUE“blind/referenceless image spatial quality evaluator”and the NIQE“natural image quality evaluator”measures were 39.38 and 3.58,respectively.The proposed image enhancement model,according to the data,produces the best image quality ratings,and it may be able to aid medical experts in the diagnosis process.The experimental results were achieved using a publicly available collection of MRI scans.
基金supported by the National Key Research and Development Program Topics(Grant No.2021YFB4000905)the National Natural Science Foundation of China(Grant Nos.62101432 and 62102309)in part by Shaanxi Natural Science Fundamental Research Program Project(No.2022JM-508).
文摘Low-light image enhancement methods have limitations in addressing issues such as color distortion,lack of vibrancy,and uneven light distribution and often require paired training data.To address these issues,we propose a two-stage unsupervised low-light image enhancement algorithm called Retinex and Exposure Fusion Network(RFNet),which can overcome the problems of over-enhancement of the high dynamic range and under-enhancement of the low dynamic range in existing enhancement algorithms.This algorithm can better manage the challenges brought about by complex environments in real-world scenarios by training with unpaired low-light images and regular-light images.In the first stage,we design a multi-scale feature extraction module based on Retinex theory,capable of extracting details and structural information at different scales to generate high-quality illumination and reflection images.In the second stage,an exposure image generator is designed through the camera response mechanism function to acquire exposure images containing more dark features,and the generated images are fused with the original input images to complete the low-light image enhancement.Experiments show the effectiveness and rationality of each module designed in this paper.And the method reconstructs the details of contrast and color distribution,outperforms the current state-of-the-art methods in both qualitative and quantitative metrics,and shows excellent performance in the real world.
基金This work is supported by theKey Research and Development Program of Hunan Province(No.2019SK2161)the Key Research and Development Program of Hunan Province(No.2016SK2017).
文摘In this paper,we propose an end-to-end cross-layer gated attention network(CLGA-Net)to directly restore fog-free images.Compared with the previous dehazing network,the dehazing model presented in this paper uses the smooth cavity convolution and local residual module as the feature extractor,combined with the channel attention mechanism,to better extract the restored features.A large amount of experimental data proves that the defogging model proposed in this paper is superior to previous defogging technologies in terms of structure similarity index(SSIM),peak signal to noise ratio(PSNR)and subjective visual quality.In order to improve the efficiency of decoding and encoding,we also describe a fusion residualmodule and conduct ablation experiments,which prove that the fusion residual is suitable for the dehazing problem.Therefore,we use fusion residual as a fixed module for encoding and decoding.In addition,we found that the traditional defogging model based on the U-net network may cause some information losses in space.We have achieved effective maintenance of low-level feature information through the cross-layer gating structure that better takes into account global and subtle features.We also present the application of our CLGA-Net in challenging scenarios where the best results in both quantity and quality can be obtained.Experimental results indicate that the present cross-layer gating module can be widely used in the same type of network.
文摘Image dehazing is a rapidly progressing research concept to enhance image contrast and resolution in computer vision applications.Owing to severe air dispersion,fog,and haze over the environment,hazy images pose specific challenges during information retrieval.With the advances in the learning theory,most of the learning-based techniques,in particular,deep neural networks are used for single-image dehazing.The existing approaches are extremely computationally complex,and the dehazed images are suffered from color distortion caused by the over-saturation and pseudo-shadow phenomenon.However,the slow convergence rate during training and haze residual is the two demerits in the conventional image dehazing networks.This article proposes a new architecture“Atrous Convolution-based Residual Deep Convolutional Neural Network(CNN)”method with hybrid Spider Monkey-Particle Swarm Optimization for image dehazing.The large receptive field of atrous convolution extracts the global contextual information.The swarm based hybrid optimization is designed for tuning the neural network parameters during training.The experiments over the standard synthetic dataset images used in the proposed network recover clear output images free from distortion and halo effects.It is observed from the statistical analysis that Mean Square Error(MSE)decreases from 74.42 to 62.03 and Peak Signal to Noise Ratio(PSNR)increases from 22.53 to 28.82.The proposed method with hybrid optimization algorithm demonstrates a superior convergence rate and is a more robust than the current state-of-the-art techniques.
基金This work is supported by the research project (grant No. G20000467) of the Institute of Geology and Geophysics, CAS and bythe China Postdoctoral Science Foundation (No. 2004036083).
文摘In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement.
基金supported by the National Natural Science Foundation of China(61403283)Shandong Provincial Natural Science Foundation(ZR2013FQ036.ZR2015PE025)+2 种基金the Spark Program of China(2013GA740053)the Spark Program of Shandong Province(2013XH06034)the Technology Development Plan of Weifang City(201301015)
文摘Images captured in hazy or foggy weather conditions can be seriously degraded by scattering of atmospheric particles,which reduces the contrast,changes the color,and makes the object features difficult to identify by human vision and by some outdoor computer vision systems.Therefore image dehazing is an important issue and has been widely researched in the field of computer vision.The role of image dehazing is to remove the influence of weather factors in order to improve the visual effects of the image and provide benefit to post-processing.This paper reviews the main techniques of image dehazing that have been developed over the past decade.Firstly,we innovatively divide a number of approaches into three categories:image enhancement based methods,image fusion based methods and image restoration based methods.All methods are analyzed and corresponding sub-categories are introduced according to principles and characteristics.Various quality evaluation methods are then described,sorted and discussed in detail.Finally,research progress is summarized and future research directions are suggested.
基金supported by the National Natural Science Foundation of China (Grant Nos.60772058 and 61271406)
文摘Underwater imaging posts a challenge due to the degradation by the absorption and scattering occurred during light propagation as well as poor lighting conditions in water medium Although image filtering techniques are utilized to improve image quality effectively, problems of the distortion of image details and the bias of color correction still exist in output images due to the complexity of image texture distribution. This paper proposes a new underwater image enhancement method based on image struc- tural decomposition. By introducing a curvature factor into the Mumford_Shah_G decomposition algorithm, image details and struc- ture components are better preserved without the gradient effect. Thus, histogram equalization and Retinex algorithms are applied in the decomposed structure component for global image enhancement and non-uniform brightness correction for gray level and the color images, then the optical absorption spectrum in water medium is incorporate to improve the color correction. Finally, the en- hauced structure and preserved detail component are re.composed to generate the output. Experiments with real underwater images verify the image improvement by the proposed method in image contrast, brightness and color fidelity.
文摘Abstract: Based on digital signal processor(DSP) and field programmable gate array(FPGA) techniques, the architecture of super large view field(SLVF) panoramic night vision image processing hardware platform was established. The panoramic unwrapping and correcting algorithm, up to a full 360°, based on coordinate rotation digital computer (CORDIC) and night vision image enhancement algorithm, based on histogram equalization theory and edge detection theory, was presented in this paper, with the purpose of processing night vision dynamic panoramic annular image. The annular image can be unwrapped and corrected to conventional rectangular panorama by the panoramic image processing algorithm, which uses the pipelined CORDIC configuration to realize a trigonometric function generator with high speed and high precision. Histogram equalization algorithm can perfectly enhance the contrast of the night vision image. Edge detection algorithm can be propitious to find and detect small dim dynamic targets in night vision circumstances. After abundant experiment, the al- gorithm for panoramic image processing and night vision image enhancement is successfully implemented in FPGA and DSP. The panoramic night vision image system is a compact device, with no external rotating parts. And the system can reliably and dynamically detect 360* SLVF panoramic night vision image.
基金supported by the National Natural Science Foundation of China(61472324)
文摘To overcome the shortcomings of the Lee image enhancement algorithm and its improvement based on the logarithmic image processing(LIP) model, this paper proposes what we believe to be an effective image enhancement algorithm. This algorithm introduces fuzzy entropy, makes full use of neighborhood information, fuzzy information and human visual characteristics.To enhance an image, this paper first carries out the reasonable fuzzy-3 partition of its histogram into the dark region, intermediate region and bright region. It then extracts the statistical characteristics of the three regions and adaptively selects the parameter αaccording to the statistical characteristics of the image’s gray-scale values. It also adds a useful nonlinear transform, thus increasing the ubiquity of the algorithm. Finally, the causes for the gray-scale value overcorrection that occurs in the traditional image enhancement algorithms are analyzed and their solutions are proposed.The simulation results show that our image enhancement algorithm can effectively suppress the noise of an image, enhance its contrast and visual effect, sharpen its edge and adjust its dynamic range.
基金Project(61134006)supported by the National Natural Science Foundation of ChinaProject(2012BAF03B05)supported by the National Key Technology R&D Program of ChinaProject(11JJ6062)supported by Hunan Provincial Natural Science Foundation,China
文摘Froth image could strongly indicate the production status in mineral flotation process.Considering low contrast and sensitivity to noises and illumination of froth images in flotation cells,an improved image enhancement algorithm based on nonsubsampled contourlet transform (NSCT) and multiscale Retinex algorithm has been proposed.Nonsubsampled contourlet transform was firstly adopted to decompose the flotation froth images,ensure signals invariance and avoid the blurring edge.Secondly,a multiscale Retinex algorithm was used to enhance the lower frequency image and improve the brightness uniformity.Adaptive classification method based on Bayes atrophy threshold was proposed to eliminate noise,preserve strong edges,and enhance weak edges of band-pass sub-band images.Experiment shows that the proposed method could enhance the edge,contour,details and curb noise,and improve visual effects.Under-segmentation caused by noise and blurring edge has been solved,which lays a foundation for extracting foamy morphological flotation froth and analyzing grade.