期刊文献+
共找到418篇文章
< 1 2 21 >
每页显示 20 50 100
An Improved Jellyfish Algorithm for Multilevel Thresholding of Magnetic Resonance Brain Image Segmentations 被引量:4
1
作者 Mohamed Abdel-Basset Reda Mohamed +3 位作者 Mohamed Abouhawwash Ripon K.Chakrabortty Michael J.Ryan Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2021年第9期2961-2977,共17页
Image segmentation is vital when analyzing medical images,especially magnetic resonance(MR)images of the brain.Recently,several image segmentation techniques based on multilevel thresholding have been proposed for med... Image segmentation is vital when analyzing medical images,especially magnetic resonance(MR)images of the brain.Recently,several image segmentation techniques based on multilevel thresholding have been proposed for medical image segmentation;however,the algorithms become trapped in local minima and have low convergence speeds,particularly as the number of threshold levels increases.Consequently,in this paper,we develop a new multilevel thresholding image segmentation technique based on the jellyfish search algorithm(JSA)(an optimizer).We modify the JSA to prevent descents into local minima,and we accelerate convergence toward optimal solutions.The improvement is achieved by applying two novel strategies:Rankingbased updating and an adaptive method.Ranking-based updating is used to replace undesirable solutions with other solutions generated by a novel updating scheme that improves the qualities of the removed solutions.We develop a new adaptive strategy to exploit the ability of the JSA to find a best-so-far solution;we allow a small amount of exploration to avoid descents into local minima.The two strategies are integrated with the JSA to produce an improved JSA(IJSA)that optimally thresholds brain MR images.To compare the performances of the IJSA and JSA,seven brain MR images were segmented at threshold levels of 3,4,5,6,7,8,10,15,20,25,and 30.IJSA was compared with several other recent image segmentation algorithms,including the improved and standard marine predator algorithms,the modified salp and standard salp swarm algorithms,the equilibrium optimizer,and the standard JSA in terms of fitness,the Structured Similarity Index Metric(SSIM),the peak signal-to-noise ratio(PSNR),the standard deviation(SD),and the Features Similarity Index Metric(FSIM).The experimental outcomes and the Wilcoxon rank-sum test demonstrate the superiority of the proposed algorithm in terms of the FSIM,the PSNR,the objective values,and the SD;in terms of the SSIM,IJSA was competitive with the others. 展开更多
关键词 Magnetic resonance imaging brain image segmentation artificial jellyfish search algorithm ranking method local minima Otsu method
下载PDF
Two-Staged Method for Ice Channel Identification Based on Image Segmentation and Corner Point Regression 被引量:1
2
作者 DONG Wen-bo ZHOU Li +2 位作者 DING Shi-feng WANG Ai-ming CAI Jin-yan 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期313-325,共13页
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ... Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second. 展开更多
关键词 ice channel ship navigation IDENTIFICATION image segmentation corner point regression
下载PDF
An Intelligent Sensor Data Preprocessing Method for OCT Fundus Image Watermarking Using an RCNN 被引量:1
3
作者 Jialun Lin Qiong Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1549-1561,共13页
Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images ha... Watermarks can provide reliable and secure copyright protection for optical coherence tomography(OCT)fundus images.The effective image segmentation is helpful for promoting OCT image watermarking.However,OCT images have a large amount of low-quality data,which seriously affects the performance of segmentationmethods.Therefore,this paper proposes an effective segmentation method for OCT fundus image watermarking using a rough convolutional neural network(RCNN).First,the rough-set-based feature discretization module is designed to preprocess the input data.Second,a dual attention mechanism for feature channels and spatial regions in the CNN is added to enable the model to adaptively select important information for fusion.Finally,the refinement module for enhancing the extraction power of multi-scale information is added to improve the edge accuracy in segmentation.RCNN is compared with CE-Net and MultiResUNet on 83 gold standard 3D retinal OCT data samples.The average dice similarly coefficient(DSC)obtained by RCNN is 6%higher than that of CE-Net.The average 95 percent Hausdorff distance(95HD)and average symmetric surface distance(ASD)obtained by RCNN are 32.4%and 33.3%lower than those of MultiResUNet,respectively.We also evaluate the effect of feature discretization,as well as analyze the initial learning rate of RCNN and conduct ablation experiments with the four different models.The experimental results indicate that our method can improve the segmentation accuracy of OCT fundus images,providing strong support for its application in medical image watermarking. 展开更多
关键词 Watermarks image segmentation rough convolutional neural network attentionmechanism feature discretization
下载PDF
Transformer-Based Cloud Detection Method for High-Resolution Remote Sensing Imagery
4
作者 Haotang Tan Song Sun +1 位作者 Tian Cheng Xiyuan Shu 《Computers, Materials & Continua》 SCIE EI 2024年第7期661-678,共18页
Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose ... Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose an innovative transformer-based method.This method leverages transformers,which are adept at processing data sequences,to enhance cloud detection accuracy.Additionally,we introduce a Cyclic Refinement Architecture that improves the resolution and quality of feature extraction,thereby aiding in the retention of critical details often lost during cloud detection.Our extensive experimental validation shows that our approach significantly outperforms established models,excelling in high-resolution feature extraction and precise cloud segmentation.By integrating Positional Visual Transformers(PVT)with this architecture,our method advances high-resolution feature delineation and segmentation accuracy.Ultimately,our research offers a novel perspective for surmounting traditional challenges in cloud detection and contributes to the advancement of precise and dependable image analysis across various domains. 展开更多
关键词 CLOUD TRANSFORMER image segmentation remotely sensed imagery pyramid vision transformer
下载PDF
Fuzzy Difference Equations in Diagnoses of Glaucoma from Retinal Images Using Deep Learning
5
作者 D.Dorathy Prema Kavitha L.Francis Raj +3 位作者 Sandeep Kautish Abdulaziz S.Almazyad Karam M.Sallam Ali Wagdy Mohamed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期801-816,共16页
The intuitive fuzzy set has found important application in decision-making and machine learning.To enrich and utilize the intuitive fuzzy set,this study designed and developed a deep neural network-based glaucoma eye ... The intuitive fuzzy set has found important application in decision-making and machine learning.To enrich and utilize the intuitive fuzzy set,this study designed and developed a deep neural network-based glaucoma eye detection using fuzzy difference equations in the domain where the retinal images converge.Retinal image detections are categorized as normal eye recognition,suspected glaucomatous eye recognition,and glaucomatous eye recognition.Fuzzy degrees associated with weighted values are calculated to determine the level of concentration between the fuzzy partition and the retinal images.The proposed model was used to diagnose glaucoma using retinal images and involved utilizing the Convolutional Neural Network(CNN)and deep learning to identify the fuzzy weighted regularization between images.This methodology was used to clarify the input images and make them adequate for the process of glaucoma detection.The objective of this study was to propose a novel approach to the early diagnosis of glaucoma using the Fuzzy Expert System(FES)and Fuzzy differential equation(FDE).The intensities of the different regions in the images and their respective peak levels were determined.Once the peak regions were identified,the recurrence relationships among those peaks were then measured.Image partitioning was done due to varying degrees of similar and dissimilar concentrations in the image.Similar and dissimilar concentration levels and spatial frequency generated a threshold image from the combined fuzzy matrix and FDE.This distinguished between a normal and abnormal eye condition,thus detecting patients with glaucomatous eyes. 展开更多
关键词 Convolutional Neural Network(CNN) glaucomatous eyes fuzzy difference equation intuitive fuzzy sets image segmentation retinal images
下载PDF
DCFNet:An Effective Dual-Branch Cross-Attention Fusion Network for Medical Image Segmentation
6
作者 Chengzhang Zhu Renmao Zhang +5 位作者 Yalong Xiao Beiji Zou Xian Chai Zhangzheng Yang Rong Hu Xuanchu Duan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1103-1128,共26页
Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Trans... Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Transformers have made significant progress.However,there are some limitations in the current integration of CNN and Transformer technology in two key aspects.Firstly,most methods either overlook or fail to fully incorporate the complementary nature between local and global features.Secondly,the significance of integrating the multiscale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer.To address this issue,we present a groundbreaking dual-branch cross-attention fusion network(DCFNet),which efficiently combines the power of Swin Transformer and CNN to generate complementary global and local features.We then designed the Feature Cross-Fusion(FCF)module to efficiently fuse local and global features.In the FCF,the utilization of the Channel-wise Cross-fusion Transformer(CCT)serves the purpose of aggregatingmulti-scale features,and the Feature FusionModule(FFM)is employed to effectively aggregate dual-branch prominent feature regions from the spatial perspective.Furthermore,within the decoding phase of the dual-branch network,our proposed Channel Attention Block(CAB)aims to emphasize the significance of the channel features between the up-sampled features and the features generated by the FCFmodule to enhance the details of the decoding.Experimental results demonstrate that DCFNet exhibits enhanced accuracy in segmentation performance.Compared to other state-of-the-art(SOTA)methods,our segmentation framework exhibits a superior level of competitiveness.DCFNet’s accurate segmentation of medical images can greatly assist medical professionals in making crucial diagnoses of lesion areas in advance. 展开更多
关键词 Convolutional neural networks Swin Transformer dual branch medical image segmentation feature cross fusion
下载PDF
Multi-Level Image Segmentation Combining Chaotic Initialized Chimp Optimization Algorithm and Cauchy Mutation
7
作者 Shujing Li Zhangfei Li +2 位作者 Wenhui Cheng Chenyang Qi Linguo Li 《Computers, Materials & Continua》 SCIE EI 2024年第8期2049-2063,共15页
To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cau... To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation. 展开更多
关键词 image segmentation image thresholding chimp optimization algorithm chaos initialization Cauchy mutation
下载PDF
An Efficient Local Radial Basis Function Method for Image Segmentation Based on the Chan-Vese Model
8
作者 Shupeng Qiu Chujin Lin Wei Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期1119-1134,共16页
In this paper,we consider the Chan–Vese(C-V)model for image segmentation and obtain its numerical solution accurately and efficiently.For this purpose,we present a local radial basis function method based on a Gaussi... In this paper,we consider the Chan–Vese(C-V)model for image segmentation and obtain its numerical solution accurately and efficiently.For this purpose,we present a local radial basis function method based on a Gaussian kernel(GA-LRBF)for spatial discretization.Compared to the standard radial basis functionmethod,this approach consumes less CPU time and maintains good stability because it uses only a small subset of points in the whole computational domain.Additionally,since the Gaussian function has the property of dimensional separation,the GA-LRBF method is suitable for dealing with isotropic images.Finally,a numerical scheme that couples GA-LRBF with the fourth-order Runge–Kutta method is applied to the C-V model,and a comparison of some numerical results demonstrates that this scheme achieves much more reliable image segmentation. 展开更多
关键词 image segmentation Chan–Vese model local radial basis functionmethod Gaussian kernel Runge–Kuttamethod
下载PDF
Transfer learning from T1-weighted to T2-weighted Magnetic resonance sequences for brain image segmentation
9
作者 Imene Mecheter Maysam Abbod +1 位作者 Habib Zaidi Abbes Amira 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期26-39,共14页
Magnetic resonance(MR)imaging is a widely employed medical imaging technique that produces detailed anatomical images of the human body.The segmentation of MR im-ages plays a crucial role in medical image analysis,as ... Magnetic resonance(MR)imaging is a widely employed medical imaging technique that produces detailed anatomical images of the human body.The segmentation of MR im-ages plays a crucial role in medical image analysis,as it enables accurate diagnosis,treatment planning,and monitoring of various diseases and conditions.Due to the lack of sufficient medical images,it is challenging to achieve an accurate segmentation,especially with the application of deep learning networks.The aim of this work is to study transfer learning from T1-weighted(T1-w)to T2-weighted(T2-w)MR sequences to enhance bone segmentation with minimal required computation resources.With the use of an excitation-based convolutional neural networks,four transfer learning mechanisms are proposed:transfer learning without fine tuning,open fine tuning,conservative fine tuning,and hybrid transfer learning.Moreover,a multi-parametric segmentation model is proposed using T2-w MR as an intensity-based augmentation technique.The novelty of this work emerges in the hybrid transfer learning approach that overcomes the overfitting issue and preserves the features of both modalities with minimal computation time and resources.The segmentation results are evaluated using 14 clinical 3D brain MR and CT images.The results reveal that hybrid transfer learning is superior for bone segmentation in terms of performance and computation time with DSCs of 0.5393±0.0007.Although T2-w-based augmentation has no significant impact on the performance of T1-w MR segmentation,it helps in improving T2-w MR segmentation and developing a multi-sequences segmentation model. 展开更多
关键词 computer vision CONVOLUTION image segmentation learning(artificial intelligence)
下载PDF
Batch Active Learning for Multispectral and Hyperspectral Image Segmentation Using Similarity Graphs
10
作者 Bohan Chen Kevin Miller +1 位作者 Andrea L.Bertozzi Jon Schwenk 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1013-1033,共21页
Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi... Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi-or hyperspectral image segmentation.Our batch active learning approach selects a collection of unlabeled pixels that satisfy a graph local maximum constraint for the active learning acquisition function that determines the relative importance of each pixel to the classification.This work builds on recent advances in the design of novel active learning acquisition functions(e.g.,the Model Change approach in arXiv:2110.07739)while adding important further developments including patch-neighborhood image analysis and batch active learning methods to further increase the accuracy and greatly increase the computational efficiency of these methods.In addition to improvements in the accuracy,our approach can greatly reduce the number of labeled pixels needed to achieve the same level of the accuracy based on randomly selected labeled pixels. 展开更多
关键词 image segmentation Graph learning Batch active learning Hyperspectral image
下载PDF
Enhancing Building Facade Image Segmentation via Object-Wise Processing and Cascade U-Net
11
作者 Haemin Jung Heesung Park +1 位作者 Hae Sun Jung Kwangyon Lee 《Computers, Materials & Continua》 SCIE EI 2024年第11期2261-2279,共19页
The growing demand for energy-efficient solutions has led to increased interest in analyzing building facades,as buildings contribute significantly to energy consumption in urban environments.However,conventional imag... The growing demand for energy-efficient solutions has led to increased interest in analyzing building facades,as buildings contribute significantly to energy consumption in urban environments.However,conventional image segmentation methods often struggle to capture fine details such as edges and contours,limiting their effectiveness in identifying areas prone to energy loss.To address this challenge,we propose a novel segmentation methodology that combines object-wise processing with a two-stage deep learning model,Cascade U-Net.Object-wise processing isolates components of the facade,such as walls and windows,for independent analysis,while Cascade U-Net incorporates contour information to enhance segmentation accuracy.The methodology involves four steps:object isolation,which crops and adjusts the image based on bounding boxes;contour extraction,which derives contours;image segmentation,which modifies and reuses contours as guide data in Cascade U-Net to segment areas;and segmentation synthesis,which integrates the results obtained for each object to produce the final segmentation map.Applied to a dataset of Korean building images,the proposed method significantly outperformed traditional models,demonstrating improved accuracy and the ability to preserve critical structural details.Furthermore,we applied this approach to classify window thermal loss in real-world scenarios using infrared images,showing its potential to identify windows vulnerable to energy loss.Notably,our Cascade U-Net,which builds upon the relatively lightweight U-Net architecture,also exhibited strong performance,reinforcing the practical value of this method.Our approach offers a practical solution for enhancing energy efficiency in buildings by providing more precise segmentation results. 展开更多
关键词 Building facade image image segmentation edge detection
下载PDF
An Efficient Smoothing and Thresholding Image Segmentation Framework with Weighted Anisotropic-Isotropic Total Variation
12
作者 Kevin Bui Yifei Lou +1 位作者 Fredrick Park Jack Xin 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1369-1405,共37页
In this paper,we design an efficient,multi-stage image segmentation framework that incorporates a weighted difference of anisotropic and isotropic total variation(AITV).The segmentation framework generally consists of... In this paper,we design an efficient,multi-stage image segmentation framework that incorporates a weighted difference of anisotropic and isotropic total variation(AITV).The segmentation framework generally consists of two stages:smoothing and thresholding,thus referred to as smoothing-and-thresholding(SaT).In the first stage,a smoothed image is obtained by an AITV-regularized Mumford-Shah(MS)model,which can be solved efficiently by the alternating direction method of multipliers(ADMMs)with a closed-form solution of a proximal operator of the l_(1)-αl_(2) regularizer.The convergence of the ADMM algorithm is analyzed.In the second stage,we threshold the smoothed image by K-means clustering to obtain the final segmentation result.Numerical experiments demonstrate that the proposed segmentation framework is versatile for both grayscale and color images,effcient in producing high-quality segmentation results within a few seconds,and robust to input images that are corrupted with noise,blur,or both.We compare the AITV method with its original convex TV and nonconvex TVP(O<p<1)counterparts,showcasing the qualitative and quantitative advantages of our proposed method. 展开更多
关键词 image segmentation Non-convex optimization Mumford-Shah(MS)model Alternating direction method of multipliers(ADMMs) Proximal operator
下载PDF
A review of medical ocular image segmentation
13
作者 Lai WEI Menghan HU 《虚拟现实与智能硬件(中英文)》 EI 2024年第3期181-202,共22页
Deep learning has been extensively applied to medical image segmentation,resulting in significant advancements in the field of deep neural networks for medical image segmentation since the notable success of U Net in ... Deep learning has been extensively applied to medical image segmentation,resulting in significant advancements in the field of deep neural networks for medical image segmentation since the notable success of U Net in 2015.However,the application of deep learning models to ocular medical image segmentation poses unique challenges,especially compared to other body parts,due to the complexity,small size,and blurriness of such images,coupled with the scarcity of data.This article aims to provide a comprehensive review of medical image segmentation from two perspectives:the development of deep network structures and the application of segmentation in ocular imaging.Initially,the article introduces an overview of medical imaging,data processing,and performance evaluation metrics.Subsequently,it analyzes recent developments in U-Net-based network structures.Finally,for the segmentation of ocular medical images,the application of deep learning is reviewed and categorized by the type of ocular tissue. 展开更多
关键词 Medical image segmentation ORBIT TUMOR U-Net TRANSFORMER
下载PDF
Classification and detection of dental images using meta-learning
14
作者 Pradeep Kumar Yadalam Raghavendra Vamsi Anegundi +1 位作者 Mario Alberto Alarcón-Sánchez Artak Heboyan 《World Journal of Clinical Cases》 SCIE 2024年第32期6559-6562,共4页
Meta-learning of dental X-rays is a machine learning technique that can be used to train models to perform new tasks quickly and with minimal input.Instead of just memorizing a task,this is accomplished through teachi... Meta-learning of dental X-rays is a machine learning technique that can be used to train models to perform new tasks quickly and with minimal input.Instead of just memorizing a task,this is accomplished through teaching a model how to learn.Algorithms for meta-learning are typically trained on a collection of training problems,each of which has a limited number of labelled instances.Multiple Xray classification tasks,including the detection of pneumonia,coronavirus disease 2019,and other disorders,have demonstrated the effectiveness of meta-learning.Meta-learning has the benefit of allowing models to be trained on dental X-ray datasets that are too few for more conventional machine learning methods.Due to the high cost and lengthy collection process associated with dental imaging datasets,this is significant for dental X-ray classification jobs.The ability to train models that are more resistant to fresh input is another benefit of meta-learning. 展开更多
关键词 Artificial intelligence META-LEARNING Dental diagnosis image segmentation Medical image interpretation Dental radiography
下载PDF
UDT:U-shaped deformable transformer for subarachnoid haemorrhage image segmentation
15
作者 Wei Xie Lianghao Jin +4 位作者 Shiqi Hua Hao Sun Bo Sun Zhigang Tu Jun Liu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期756-768,共13页
Subarachnoid haemorrhage(SAH),mostly caused by the rupture of intracranial aneu-rysm,is a common disease with a high fatality rate.SAH lesions are generally diffusely distributed,showing a variety of scales with irreg... Subarachnoid haemorrhage(SAH),mostly caused by the rupture of intracranial aneu-rysm,is a common disease with a high fatality rate.SAH lesions are generally diffusely distributed,showing a variety of scales with irregular edges.The complex characteristics of lesions make SAH segmentation a challenging task.To cope with these difficulties,a u-shaped deformable transformer(UDT)is proposed for SAH segmentation.Specifically,first,a multi-scale deformable attention(MSDA)module is exploited to model the diffuseness and scale-variant characteristics of SAH lesions,where the MSDA module can fuse features in different scales and adjust the attention field of each element dynamically to generate discriminative multi-scale features.Second,the cross deformable attention-based skip connection(CDASC)module is designed to model the irregular edge char-acteristic of SAH lesions,where the CDASC module can utilise the spatial details from encoder features to refine the spatial information of decoder features.Third,the MSDA and CDASC modules are embedded into the backbone Res-UNet to construct the proposed UDT.Extensive experiments are conducted on the self-built SAH-CT dataset and two public medical datasets(GlaS and MoNuSeg).Experimental results show that the presented UDT achieves the state-of-the-art performance. 展开更多
关键词 image segmentation medical image processing
下载PDF
ATFF: Advanced Transformer with Multiscale Contextual Fusion for Medical Image Segmentation
16
作者 Xinping Guo Lei Wang +2 位作者 Zizhen Huang Yukun Zhang Yaolong Han 《Journal of Computer and Communications》 2024年第3期238-251,共14页
Deep convolutional neural network (CNN) greatly promotes the automatic segmentation of medical images. However, due to the inherent properties of convolution operations, CNN usually cannot establish long-distance inte... Deep convolutional neural network (CNN) greatly promotes the automatic segmentation of medical images. However, due to the inherent properties of convolution operations, CNN usually cannot establish long-distance interdependence, which limits the segmentation performance. Transformer has been successfully applied to various computer vision, using self-attention mechanism to simulate long-distance interaction, so as to capture global information. However, self-attention lacks spatial location and high-performance computing. In order to solve the above problems, we develop a new medical transformer, which has a multi-scale context fusion function and can be used for medical image segmentation. The proposed model combines convolution operation and attention mechanism to form a u-shaped framework, which can capture both local and global information. First, the traditional converter module is improved to an advanced converter module, which uses post-layer normalization to obtain mild activation values, and uses scaled cosine attention with a moving window to obtain accurate spatial information. Secondly, we also introduce a deep supervision strategy to guide the model to fuse multi-scale feature information. It further enables the proposed model to effectively propagate feature information across layers, Thanks to this, it can achieve better segmentation performance while being more robust and efficient. The proposed model is evaluated on multiple medical image segmentation datasets. Experimental results demonstrate that the proposed model achieves better performance on a challenging dataset (ETIS) compared to existing methods that rely only on convolutional neural networks, transformers, or a combination of both. The mDice and mIou indicators increased by 2.74% and 3.3% respectively. 展开更多
关键词 Medical image Segmentation Advanced Transformer Deep Supervision Attention Mechanism
下载PDF
A Review of Research on Accurate Segmentation of Multimodal Tumor Images
17
作者 Hao He Zixuan Yin Mingzhu Dong 《Journal of Electronic Research and Application》 2024年第6期124-129,共6页
Accurate segmentation of tumor images is a key core technology for the diagnosis and treatment of tumor diseases.In this paper,we analyze a variety of novel and targeted algorithms to solve these problems,summarize,an... Accurate segmentation of tumor images is a key core technology for the diagnosis and treatment of tumor diseases.In this paper,we analyze a variety of novel and targeted algorithms to solve these problems,summarize,and elaborate the method based on multimodal tumor image processing given the characteristics of serious grayscale inhomogeneity,texture instability,and diversity complexity of tumor images. 展开更多
关键词 MULTIMODAL image segmentation Tumor image
下载PDF
Application of U-Net and Optimized Clustering in Medical Image Segmentation:A Review 被引量:3
18
作者 Jiaqi Shao Shuwen Chen +3 位作者 Jin Zhou Huisheng Zhu Ziyi Wang Mackenzie Brown 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2173-2219,共47页
As a mainstream research direction in the field of image segmentation,medical image segmentation plays a key role in the quantification of lesions,three-dimensional reconstruction,region of interest extraction and so ... As a mainstream research direction in the field of image segmentation,medical image segmentation plays a key role in the quantification of lesions,three-dimensional reconstruction,region of interest extraction and so on.Compared with natural images,medical images have a variety of modes.Besides,the emphasis of information which is conveyed by images of different modes is quite different.Because it is time-consuming and inefficient to manually segment medical images only by professional and experienced doctors.Therefore,large quantities of automated medical image segmentation methods have been developed.However,until now,researchers have not developed a universal method for all types of medical image segmentation.This paper reviews the literature on segmentation techniques that have produced major breakthroughs in recent years.Among the large quantities of medical image segmentation methods,this paper mainly discusses two categories of medical image segmentation methods.One is the improved strategies based on traditional clustering method.The other is the research progress of the improved image segmentation network structure model based on U-Net.The power of technology proves that the performance of the deep learning-based method is significantly better than that of the traditional method.This paper discussed both advantages and disadvantages of different algorithms and detailed how these methods can be used for the segmentation of lesions or other organs and tissues,as well as possible technical trends for future work. 展开更多
关键词 Medical image segmentation clustering algorithm U-Net
下载PDF
Convolutional neural network-based segmentation network applied to image recognition of angiodysplasias lesion under capsule endoscopy 被引量:2
19
作者 Ye Chu Fang Huang +8 位作者 Min Gao Duo-Wu Zou Jie Zhong Wei Wu Qi Wang Xiao-Nan Shen Ting-Ting Gong Yuan-Yi Li Li-Fu Wang 《World Journal of Gastroenterology》 SCIE CAS 2023年第5期879-889,共11页
BACKGROUND Small intestinal vascular malformations(angiodysplasias)are common causes of small intestinal bleeding.While capsule endoscopy has become the primary diagnostic method for angiodysplasia,manual reading of t... BACKGROUND Small intestinal vascular malformations(angiodysplasias)are common causes of small intestinal bleeding.While capsule endoscopy has become the primary diagnostic method for angiodysplasia,manual reading of the entire gastrointestinal tract is time-consuming and requires a heavy workload,which affects the accuracy of diagnosis.AIM To evaluate whether artificial intelligence can assist the diagnosis and increase the detection rate of angiodysplasias in the small intestine,achieve automatic disease detection,and shorten the capsule endoscopy(CE)reading time.METHODS A convolutional neural network semantic segmentation model with a feature fusion method,which automatically recognizes the category of vascular dysplasia under CE and draws the lesion contour,thus improving the efficiency and accuracy of identifying small intestinal vascular malformation lesions,was proposed.Resnet-50 was used as the skeleton network to design the fusion mechanism,fuse the shallow and depth features,and classify the images at the pixel level to achieve the segmentation and recognition of vascular dysplasia.The training set and test set were constructed and compared with PSPNet,Deeplab3+,and UperNet.RESULTS The test set constructed in the study achieved satisfactory results,where pixel accuracy was 99%,mean intersection over union was 0.69,negative predictive value was 98.74%,and positive predictive value was 94.27%.The model parameter was 46.38 M,the float calculation was 467.2 G,and the time length to segment and recognize a picture was 0.6 s.CONCLUSION Constructing a segmentation network based on deep learning to segment and recognize angiodysplasias lesions is an effective and feasible method for diagnosing angiodysplasias lesions. 展开更多
关键词 Artificial intelligence image segmentation Capsule endoscopy Angiodysplasias
下载PDF
Deep Learning for Image Segmentation: A Focus on Medical Imaging 被引量:2
20
作者 Ali F.Khalifa Eman Badr 《Computers, Materials & Continua》 SCIE EI 2023年第4期1995-2024,共30页
Image segmentation is crucial for various research areas. Manycomputer vision applications depend on segmenting images to understandthe scene, such as autonomous driving, surveillance systems, robotics, andmedical ima... Image segmentation is crucial for various research areas. Manycomputer vision applications depend on segmenting images to understandthe scene, such as autonomous driving, surveillance systems, robotics, andmedical imaging. With the recent advances in deep learning (DL) and itsconfounding results in image segmentation, more attention has been drawnto its use in medical image segmentation. This article introduces a surveyof the state-of-the-art deep convolution neural network (CNN) models andmechanisms utilized in image segmentation. First, segmentation models arecategorized based on their model architecture and primary working principle.Then, CNN categories are described, and various models are discussed withineach category. Compared with other existing surveys, several applicationswith multiple architectural adaptations are discussed within each category.A comparative summary is included to give the reader insights into utilizedarchitectures in different applications and datasets. This study focuses onmedical image segmentation applications, where the most widely used architecturesare illustrated, and other promising models are suggested that haveproven their success in different domains. Finally, the present work discussescurrent limitations and solutions along with future trends in the field. 展开更多
关键词 Deep learning medical imaging convolution neural network image segmentation medical applications survey
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部