Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,bu...Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,but they are mostly used in low-energy(≤130 keV)regions.Direct detection of MeV X-rays,which ensure thorough penetration of the thick shell walls of containers,trucks,and aircraft,is also highly desired in practical industrial applications.Unfortunately,scintillation semiconductors for high-energy X-ray detection are currently scarce.Here,This paper reports a 2D(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single crystal with outstanding sensitivity and stability toward X-ray radiation that provides an ultra-wide detectable X-ray range of between 8.20 nGy_(air)s^(-1)(50 keV)and 15.24 mGy_(air)s^(-1)(9 MeV).The(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single-crystal detector with a vertical structure is used for high-performance X-ray imaging,delivering a good spatial resolution of 4.3 Ip mm^(-1)in a plane-scan imaging system.Low ionic migration in the 2D perovskite enables the vertical device to be operated with hundreds of keV to MeV X-ray radiation at high bias voltages,leading to a sensitivity of 46.90μC Gy_(air)-1 cm^(-2)(-1.16 Vμm^(-1))with 9 MeV X-ray radiation,demonstrating that 2D perovskites have enormous potential for high-energy industrial applications.展开更多
Background Identifying the transmural extent of myocardial necrosis and the degree of myocardial viability in acute myocardial infarction (AMI) is important clinically. The aim of this study was to assess myocardial...Background Identifying the transmural extent of myocardial necrosis and the degree of myocardial viability in acute myocardial infarction (AMI) is important clinically. The aim of this study was to assess myocardial viability using two-dimensional speckle tracking imaging (2D-STI) in patients with AMI. Methods 2D-STI was performed at initial presentation, three days, and six months after primary percutaneous coronary intervention (PCI) in 30 patients with AMI, who had a left anterior descending coronary artery (LAD) culprit lesion. In addition, 20 patients who had minimal stenotic lesions (〈 30% stenosis) on coronary angiography were also included in the control group. At six months dobutamine echocardiography was performed for viability assessment in seven segments of the LAD territory. According to the recovery of wall motion abnormality, segments were classified as viable or non-viable. Results A total of 131 segments were viable, and 44 were nonviable. Multivariate analysis revealed significant differences between the viable and nonviable segments in the peak systolic strain, the peak systolic strain rate at initial presentation, and peak systolic strain rate three days after primary PCI. Among these, the initial peak systolic strain rate had the highest predictive value for myocardial viability (hazard ratio: 31.22, P 〈 0.01). Conclusions 2D-STI is feasible for assessing myocardial viability, and the peak systolic strain rate might be the most reliable predictor of myocardial viability in patients with AMI.展开更多
We report an experimental demonstration of two-dimensional(2D) lensless ghost imaging with true thermal light. An electrodeless discharge lamp with a higher light intensity than the hollow cathode lamp used before i...We report an experimental demonstration of two-dimensional(2D) lensless ghost imaging with true thermal light. An electrodeless discharge lamp with a higher light intensity than the hollow cathode lamp used before is employed as a light source. The main problem encountered by the 2D lensless ghost imaging with true thermal light is that its coherence time is much shorter than the resolution time of the detection system. To overcome this difficulty we derive a method based on the relationship between the true and measured values of the second-order optical intensity correlation, by which means the visibility of the ghost image can be dramatically enhanced. This method would also be suitable for ghost imaging with natural sunlight.展开更多
Objective: To research the clinical application of two-dimensional speckle tracking imaging (2D-STI) in quantitative assessment of left ventricular function in patients with obstructive sleep apnea-hypopnea syndrome (...Objective: To research the clinical application of two-dimensional speckle tracking imaging (2D-STI) in quantitative assessment of left ventricular function in patients with obstructive sleep apnea-hypopnea syndrome (OSAS). Method: From July 2016 to December 2018, 86 patients with OSAS were selected as OSAS group. According to sleep apnea hypopnea index (AHI), they were divided into mild OSAS group (24 cases), moderate OSAS group (29 cases) and severe OSAS group (33 cases). Another 50 healthy volunteers who underwent physical examination in our hospital during the same period were selected as the control group. The left ventricular function of all patients was quantitatively assessed by 2D-STI. The left ventricular function of all patients was quantitatively assessed by 2D-STI. The results of routine echocardiography and left ventricular global strain parameters of the OSAS group, the control group and the OSAS patients with different severity were compared and analyzed. Result: There were no significant differences in the levels of left ventricular ejection fraction (LVEF), left ventricular end diastolic diameter (LVEDd), left ventricular end systolic diameter (LVESd) between the two groups and OSAS patients with different severity (P>0.05). The levels of IVST, LVPW and LVMI in the OSAS group were significantly higher than those in the control group, the levels of end-diastolic interventricular septal thickness (IVS), left ventricular posterior wall thickness (LVPW), left ventricular mass index (LVMI) in the severe OSAS group were significantly higher than those in the mild and moderate OSAS group, and the levels of IVST, LVPW and LVMI in the moderate OSAS group were significantly higher than those in the mild OSAS group, there were significant differences between groups (P<0.05). The levels of GLS, GRS and GCS in the OSAS group were significantly lower than those in the control group (P<0.05). GLS, GRS and GCS levels in the severe OSAS group were significantly lower than those in the mild OSAS group and the moderate OSAS group, while the levels of global longitudinal strain (GLS), global radial strain (GRS) and global circumferential strain (GCS) in the moderate OSAS group were significantly lower than those in the mild OSAS group (P<0.05). Conclusion: The left ventricular systolic function of OSAS patients is obviously impaired. Left ventricular function in OSAS patients can be assessed timely and accurately by two-dimensional speckle tracking imaging.展开更多
This study evaluated the change in regional left ventricular myocardial function in rats following acute occlusion of the left anterior descending coronary artery (LAD) by using two-dimensional speckle tracking imag...This study evaluated the change in regional left ventricular myocardial function in rats following acute occlusion of the left anterior descending coronary artery (LAD) by using two-dimensional speckle tracking imaging (2D-STI). Sixty Wistar rats were randomly divided into two groups, a myocardial infarction (MI) group, in which 50 rats were subjected to LAD occlusion for 30–45 min, and a sham-operated (SHAM) group that contained 10 rats serving as control. Echo-cardiography was performed at baseline and 1, 4 and 8 week(s) after the operation. High frequency two-dimensional images of left ventricular short axis at papillary muscle level were recorded. Peak systolic radial strain (PRS) and circumferential strain (PCS) were measured in the mid-ventricle in short-axis view by using EchoPAC workstation. Left ventricular internal diameter at diastole (LVIDd) and systole (LVIDs), fractional shortening (FS), ejection fraction (EF) and left ventricular mass (LVM) were measured by anatomical M-model echocardiography. Infarct size was measured using triphenyl tetrazolium chloride (TTC) staining 1 week and 8 weeks after the operation. Fibrosis of left ventricu-lar myocardium was displayed using Van Gieson staining 1 week after the infarction. In terms of the TTC staining results, the left ventricle fell into three categories: infarcted, peri-infarcted and remote myocardial regions. Compared with those at baseline and in the SHAM group, (1) PRS and PCS in the infarcted, peri-infarcted and remote myocardial regions were significantly decreased in the MI group within 1 week after the operation (P〈0.05) and the low levels lasted 8 weeks; (2) Compared with those at baseline, LVIDd, LVIDs, FS, EF and LVM in the MI group showed no significant dif-ference 1 week after the operation (P〉0.05). However, LVIDd, LVIDs and LVM were increased sig-nificantly 4 and 8 weeks after the operation (P〈0.05), and FS and EF were decreased substantially (P〈0.05). Van Gieson staining showed that fibrosis developed in all the three myocardial regions to varying degrees. It is concluded that 2D-STI is non-invasive and can be used to assess regional func-tion of myocardium with different blood supply in rats following acute occlusion of the LAD, and can be used as a sensitive and reliable means to follow up the process of left ventricular remodeling.展开更多
To assess the normal value of left ventricular twist (LVtw) and examine the changes with normal aging by 2-dimensional ultrasound speckle-tracking imaging (STI), 121 healthy volunteers were divided into three age ...To assess the normal value of left ventricular twist (LVtw) and examine the changes with normal aging by 2-dimensional ultrasound speckle-tracking imaging (STI), 121 healthy volunteers were divided into three age groups: a youth group (19-45 y old), a middle-age group (46-64 y old ) and an old-age group (≥65 y old). Basal and apical short-axis images of left ventricular were acquired to analyse LV rotation (LVrot) and LVrot velocity. LVtw and LVtw velocity was defined as apical LVrot and LVrot velocity relative to the base. Peak twist (Ptw), twist at aortic valve closure (AVCtw), twist at mitral valve opening (MVOtw), untwisting rate (UntwR), half time of untwisting (HTU), peak twist velocity (PTV), time to peak twist velocity (TPTV), peak untwisting velocity (PUV), time to peak untwisting velocity (TPUV) were separately measured. The results showed that the normal LV performs a wringing motion with a clockwise rotation at the base and a counterclock- wise rotation at the apex (as seen from the apex). The LVtw velocity showed a systolic counterclockwise twist followed by a diastolic clockwise twist. Peak twist develops near the end of systole (96%±4.2% of systole). With aging, Ptw, AVCtw, MVOtw, HTU and PUV increased significantly (P〈0.05) and UntwR decreased significantly (P〈0.05). However, no significant differences in TPUV, PTV and TPTV were noted among the 3 groups (P〉0.05). It is concluded that LV twist can be measured non-invasively by 2-dimensional ultrasound STI imaging. The age-related changes of LVtw should be fully taken into consideration in the assessment of LV function.展开更多
This paper presents the system design and experimental results of a 35GHz coherent LFM-CW radar for use in near range two-dimensional imaging. Special techniques, including FM sweep linearization, range-segment proces...This paper presents the system design and experimental results of a 35GHz coherent LFM-CW radar for use in near range two-dimensional imaging. Special techniques, including FM sweep linearization, range-segment processing, system background voltage suppression and dynamic range compression are also presented.展开更多
Grating-based X-ray phase contrast imaging has been demonstrated to he an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refr...Grating-based X-ray phase contrast imaging has been demonstrated to he an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse- projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensionak phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method.展开更多
Summary: This study sought to evaluate the contribution of two-dimensional ultrasound (2D-US) and three-dimensional skeletal imaging ultrasound (3D-SUIS) in the prenatal diagnosis of sirenomelia. Be- tween Septem...Summary: This study sought to evaluate the contribution of two-dimensional ultrasound (2D-US) and three-dimensional skeletal imaging ultrasound (3D-SUIS) in the prenatal diagnosis of sirenomelia. Be- tween September 2010 and April 2014, a prospective study was conducted in a single referral center using 3D-SU1S performed after 2D-US in 10 cases of sirenomelia. Diagnostic accuracy and detailed findings were compared with postnatal three-dimensional helical computed tomography (3D-HCT), radiological findings and autopsy. Pregnancy was terminated in all 10 sirenomelia cases, including 9 singletons and I conjoined twin pregnancy, for a total of 5 males and 5 females. These cases of sirenomelia were deter- mined by autopsy and/or chromosomal examination. Initial 2D-US showed that there were 10 cases of oligohydranmios, bilateral renal agenesis, bladder agenesis, single umbilical artery, fusion of the lower limbs and spinal abnormalities; 8 cases of dipus or monopus; 2 cases of apus; and 8 cases of cardiac abnormalities. Subsequent 3D-SUIS showed that there were 9 cases of scoliosis, l0 cases of sacrococ- cygeal vertebra dysplasia, 3 cases of hemivertebra, 1 case of vertebral fusion, 3 cases of spina bifida, and 5 cases of rib abnormalities. 3D-SUIS identified significantly more skeletal abnormalities than did 2D-US, and its accuracy was 79.5% (70/88) compared with 3D-HCT and radiography. 3D-SUIS seems to be a useful complementary method to 2D-US and may improve the accuracy of identifying prenatal skeletal abnormalities related to sirenomelia.展开更多
Photon-counting LiDAR using a two-dimensional(2D)array detector has the advantages of high lateral resolution and fast acquisition speed.The non-uniform intensity profile of the illumination beam and non-uniform quant...Photon-counting LiDAR using a two-dimensional(2D)array detector has the advantages of high lateral resolution and fast acquisition speed.The non-uniform intensity profile of the illumination beam and non-uniform quantum efficiency of the detectors in the 2D array deteriorate the imaging quality.Herein,we propose a photon-counting LiDAR system that uses a spatial light modulator to control the spatial intensity to compensate for both the non-uniform intensity profile of the illumination beam,and the variation in the quantum efficiency of the detectors in the 2D array.By using a 635 nm peak wavelength and 4 mW average power semiconductor laser,lab-based experiments at a 4.27 m stand-off distance are performed to verify the effectiveness of the proposed method.Compared with the unmodulated method,the standard deviation of the intensity image of the proposed method is reduced from 0.109 to 0.089 for a whiteboard target,with an average signal photon number of 0.006 per pixel.展开更多
AIM To investigate the repeatability of proton magnetic resonance spectroscopy in the in vivo measurement of human cerebral levels of choline-containing compounds(Cho).METHODS Two consecutive scans were carried out in...AIM To investigate the repeatability of proton magnetic resonance spectroscopy in the in vivo measurement of human cerebral levels of choline-containing compounds(Cho).METHODS Two consecutive scans were carried out in six healthy resting subjects at a magnetic field strength of 1.5 T. On each occasion, neurospectroscopy data were collected from 64 voxels using the same 2 D chemical shift imaging(CSI) sequence. The data were analyzed in the same way, using the same software, to obtain the values for each voxel of the ratio of Cho to creatine. The Wilcoxon related-samples signed-rank test, coefficient of variation(CV), repeatability coefficient(RC), and intraclass correlation coefficient(ICC) were used to assess the repeatability. RESULTS The CV ranged from 2.75% to 33.99%, while the minimum RC was 5.68%. There was excellent reproducibility, as judged by significant ICC values, in 26 voxels. Just three voxels showed significant differences according to the Wilcoxon related-samples signed-rank test. CONCLUSION It is therefore concluded that when CSI multivoxel proton neurospectroscopy is used to measure cerebral choline-containing compounds at 1.5 T, the reproducibility is highly acceptable.展开更多
Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have b...Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices.展开更多
The underwater X-ray imaging technology development is significant to subaqueous target reconnaissance/detection/identification, subfluvial archaeology,submerged resource exploration, etc. As the core of X-ray imaging...The underwater X-ray imaging technology development is significant to subaqueous target reconnaissance/detection/identification, subfluvial archaeology,submerged resource exploration, etc. As the core of X-ray imaging detection, the scintillator has been plagued by inherent moisture absorption and decomposition, and strict requirements for seamless packaging and waterproofing.Here, we designed a manganese-doped two-dimensional(2D) perovskite scintillator modified by hydrophobic longchain organic amine through the combination of component and doping engineering. The modified perovskites show high water repellency that can be used as an underwater X-ray scintillator. X-ray images of aquatic organisms or other objects with a high spatial resolution of10 lp·mm^(-1) at a big view field(32 mm × 32 mm) were obtained by scintillation screen. This hydrophobic perovskite scintillator based on molecular design is of great promise in underwater X-ray nondestructive testing technology development.展开更多
Interpreting experimental diagnostics data in tokamaks,while considering non-ideal effects,is challenging due to the complexity of plasmas.To address this challenge,a general synthetic diagnostics(GSD)platform has bee...Interpreting experimental diagnostics data in tokamaks,while considering non-ideal effects,is challenging due to the complexity of plasmas.To address this challenge,a general synthetic diagnostics(GSD)platform has been established that facilitates microwave imaging reflectometry and electron cyclotron emission imaging.This platform utilizes plasma profiles as input and incorporates the finite-difference time domain,ray tracing and the radiative transfer equation to calculate the propagation of plasma spontaneous radiation and the external electromagnetic field in plasmas.Benchmark tests for classical cases have been conducted to verify the accuracy of every core module in the GSD platform.Finally,2D imaging of a typical electron temperature distribution is reproduced by this platform and the results are consistent with the given real experimental data.This platform also has the potential to be extended to 3D electromagnetic field simulations and other microwave diagnostics such as cross-polarization scattering.展开更多
The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and...The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and ms.This beamline has been specifically designed to facilitate the investigation of a wide range of rapid phenomena,such as the deformation and failure of materials subjected to intense dynamic loads.In addition,it enables the study of high-pressure and high-speed fuel spray processes in automotive engines.The light source of this beamline is a cryogenic permanent magnet undulator(CPMU)that is cooled by liquid nitrogen.This CPMU can generate X-ray photons within an energy range of 8.7-30 keV.The beamline offers two modes of operation:monochromatic beam mode with a liquid nitrogen-cooled double-crystal monochromator(DCM)and pink beam mode with the first crystal of the DCM out of the beam path.Four X-ray imaging methods were implemented in BL16U2:single-pulse ultrafast X-ray imaging,microsecond-resolved X-ray dynamic imaging,millisecond-resolved X-ray dynamic micro-CT,and high-resolution quantitative micro-CT.Furthermore,BL16U2 is equipped with various in situ impact loading systems,such as a split Hopkinson bar system,light gas gun,and fuel spray chamber.Following the completion of the final commissioning in 2021 and subsequent trial operations in 2022,the beamline has been officially available to users from 2023.展开更多
Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding th...Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.展开更多
Olympus Corporation developed texture and color enhancement imaging(TXI)as a novel image-enhancing endoscopic technique.This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for ga...Olympus Corporation developed texture and color enhancement imaging(TXI)as a novel image-enhancing endoscopic technique.This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for gastrointestinal disease identification in the clinical setting.A randomized controlled trial demonstrated improvements in the colorectal adenoma detection rate(ADR)and the mean number of adenomas per procedure(MAP)of TXI compared with those of white-light imaging(WLI)observation(58.7%vs 42.7%,adjusted relative risk 1.35,95%CI:1.17-1.56;1.36 vs 0.89,adjusted incident risk ratio 1.48,95%CI:1.22-1.80,respectively).A cross-over study also showed that the colorectal MAP and ADR in TXI were higher than those in WLI(1.5 vs 1.0,adjusted odds ratio 1.4,95%CI:1.2-1.6;58.2%vs 46.8%,1.5,1.0-2.3,respectively).A randomized controlled trial demonstrated non-inferiority of TXI to narrow-band imaging in the colorectal mean number of adenomas and sessile serrated lesions per procedure(0.29 vs 0.30,difference for non-inferiority-0.01,95%CI:-0.10 to 0.08).A cohort study found that scoring for ulcerative colitis severity using TXI could predict relapse of ulcerative colitis.A cross-sectional study found that TXI improved the gastric cancer detection rate compared to WLI(0.71%vs 0.29%).A cross-sectional study revealed that the sensitivity and accuracy for active Helicobacter pylori gastritis in TXI were higher than those of WLI(69.2%vs 52.5%and 85.3%vs 78.7%,res-pectively).In conclusion,TXI can improve gastrointestinal lesion detection and qualitative diagnosis.Therefore,further studies on the efficacy of TXI in clinical practice are required.展开更多
Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph...Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images.展开更多
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d...Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.展开更多
Due to its low cost, flexibility and convenience for long distance data transfer, plastic scintillation fiber (PSF) have been increasingly used in building detectors or sensors for detecting various radiations and ima...Due to its low cost, flexibility and convenience for long distance data transfer, plastic scintillation fiber (PSF) have been increasingly used in building detectors or sensors for detecting various radiations and imaging. In this work, the performance of using PSF coupled with charge-coupled devices (CCD) to build area detectors for 2D X-ray imaging is studied. We describe the experimental setup and show the obtained images from CCD. Modulation Transfer Function (MTF) of the PSF array is also presented and compared to earlier reports.展开更多
基金financial support from the National Natural Science Foundation of China(Nos.22075284,51872287,and U2030118)the Youth Innovation Promotion Association CAS(No.2019304)+1 种基金the Fund of Mindu Innovation Laboratory(No.2021ZR201)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20210039)
文摘Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,but they are mostly used in low-energy(≤130 keV)regions.Direct detection of MeV X-rays,which ensure thorough penetration of the thick shell walls of containers,trucks,and aircraft,is also highly desired in practical industrial applications.Unfortunately,scintillation semiconductors for high-energy X-ray detection are currently scarce.Here,This paper reports a 2D(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single crystal with outstanding sensitivity and stability toward X-ray radiation that provides an ultra-wide detectable X-ray range of between 8.20 nGy_(air)s^(-1)(50 keV)and 15.24 mGy_(air)s^(-1)(9 MeV).The(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single-crystal detector with a vertical structure is used for high-performance X-ray imaging,delivering a good spatial resolution of 4.3 Ip mm^(-1)in a plane-scan imaging system.Low ionic migration in the 2D perovskite enables the vertical device to be operated with hundreds of keV to MeV X-ray radiation at high bias voltages,leading to a sensitivity of 46.90μC Gy_(air)-1 cm^(-2)(-1.16 Vμm^(-1))with 9 MeV X-ray radiation,demonstrating that 2D perovskites have enormous potential for high-energy industrial applications.
文摘Background Identifying the transmural extent of myocardial necrosis and the degree of myocardial viability in acute myocardial infarction (AMI) is important clinically. The aim of this study was to assess myocardial viability using two-dimensional speckle tracking imaging (2D-STI) in patients with AMI. Methods 2D-STI was performed at initial presentation, three days, and six months after primary percutaneous coronary intervention (PCI) in 30 patients with AMI, who had a left anterior descending coronary artery (LAD) culprit lesion. In addition, 20 patients who had minimal stenotic lesions (〈 30% stenosis) on coronary angiography were also included in the control group. At six months dobutamine echocardiography was performed for viability assessment in seven segments of the LAD territory. According to the recovery of wall motion abnormality, segments were classified as viable or non-viable. Results A total of 131 segments were viable, and 44 were nonviable. Multivariate analysis revealed significant differences between the viable and nonviable segments in the peak systolic strain, the peak systolic strain rate at initial presentation, and peak systolic strain rate three days after primary PCI. Among these, the initial peak systolic strain rate had the highest predictive value for myocardial viability (hazard ratio: 31.22, P 〈 0.01). Conclusions 2D-STI is feasible for assessing myocardial viability, and the peak systolic strain rate might be the most reliable predictor of myocardial viability in patients with AMI.
基金supported by the National Natural Science Foundation of China(Grant Nos.11204117,11304007,and 60907031)the China Postdoctoral Science Foundation(Grant No.2013M540146)+1 种基金the Fund from the Education Department of Liaoning Province,China(Grant No.L2012001)the National HiTech Research and Development Program of China(Grant No.2013AA122902)
文摘We report an experimental demonstration of two-dimensional(2D) lensless ghost imaging with true thermal light. An electrodeless discharge lamp with a higher light intensity than the hollow cathode lamp used before is employed as a light source. The main problem encountered by the 2D lensless ghost imaging with true thermal light is that its coherence time is much shorter than the resolution time of the detection system. To overcome this difficulty we derive a method based on the relationship between the true and measured values of the second-order optical intensity correlation, by which means the visibility of the ghost image can be dramatically enhanced. This method would also be suitable for ghost imaging with natural sunlight.
文摘Objective: To research the clinical application of two-dimensional speckle tracking imaging (2D-STI) in quantitative assessment of left ventricular function in patients with obstructive sleep apnea-hypopnea syndrome (OSAS). Method: From July 2016 to December 2018, 86 patients with OSAS were selected as OSAS group. According to sleep apnea hypopnea index (AHI), they were divided into mild OSAS group (24 cases), moderate OSAS group (29 cases) and severe OSAS group (33 cases). Another 50 healthy volunteers who underwent physical examination in our hospital during the same period were selected as the control group. The left ventricular function of all patients was quantitatively assessed by 2D-STI. The left ventricular function of all patients was quantitatively assessed by 2D-STI. The results of routine echocardiography and left ventricular global strain parameters of the OSAS group, the control group and the OSAS patients with different severity were compared and analyzed. Result: There were no significant differences in the levels of left ventricular ejection fraction (LVEF), left ventricular end diastolic diameter (LVEDd), left ventricular end systolic diameter (LVESd) between the two groups and OSAS patients with different severity (P>0.05). The levels of IVST, LVPW and LVMI in the OSAS group were significantly higher than those in the control group, the levels of end-diastolic interventricular septal thickness (IVS), left ventricular posterior wall thickness (LVPW), left ventricular mass index (LVMI) in the severe OSAS group were significantly higher than those in the mild and moderate OSAS group, and the levels of IVST, LVPW and LVMI in the moderate OSAS group were significantly higher than those in the mild OSAS group, there were significant differences between groups (P<0.05). The levels of GLS, GRS and GCS in the OSAS group were significantly lower than those in the control group (P<0.05). GLS, GRS and GCS levels in the severe OSAS group were significantly lower than those in the mild OSAS group and the moderate OSAS group, while the levels of global longitudinal strain (GLS), global radial strain (GRS) and global circumferential strain (GCS) in the moderate OSAS group were significantly lower than those in the mild OSAS group (P<0.05). Conclusion: The left ventricular systolic function of OSAS patients is obviously impaired. Left ventricular function in OSAS patients can be assessed timely and accurately by two-dimensional speckle tracking imaging.
文摘This study evaluated the change in regional left ventricular myocardial function in rats following acute occlusion of the left anterior descending coronary artery (LAD) by using two-dimensional speckle tracking imaging (2D-STI). Sixty Wistar rats were randomly divided into two groups, a myocardial infarction (MI) group, in which 50 rats were subjected to LAD occlusion for 30–45 min, and a sham-operated (SHAM) group that contained 10 rats serving as control. Echo-cardiography was performed at baseline and 1, 4 and 8 week(s) after the operation. High frequency two-dimensional images of left ventricular short axis at papillary muscle level were recorded. Peak systolic radial strain (PRS) and circumferential strain (PCS) were measured in the mid-ventricle in short-axis view by using EchoPAC workstation. Left ventricular internal diameter at diastole (LVIDd) and systole (LVIDs), fractional shortening (FS), ejection fraction (EF) and left ventricular mass (LVM) were measured by anatomical M-model echocardiography. Infarct size was measured using triphenyl tetrazolium chloride (TTC) staining 1 week and 8 weeks after the operation. Fibrosis of left ventricu-lar myocardium was displayed using Van Gieson staining 1 week after the infarction. In terms of the TTC staining results, the left ventricle fell into three categories: infarcted, peri-infarcted and remote myocardial regions. Compared with those at baseline and in the SHAM group, (1) PRS and PCS in the infarcted, peri-infarcted and remote myocardial regions were significantly decreased in the MI group within 1 week after the operation (P〈0.05) and the low levels lasted 8 weeks; (2) Compared with those at baseline, LVIDd, LVIDs, FS, EF and LVM in the MI group showed no significant dif-ference 1 week after the operation (P〉0.05). However, LVIDd, LVIDs and LVM were increased sig-nificantly 4 and 8 weeks after the operation (P〈0.05), and FS and EF were decreased substantially (P〈0.05). Van Gieson staining showed that fibrosis developed in all the three myocardial regions to varying degrees. It is concluded that 2D-STI is non-invasive and can be used to assess regional func-tion of myocardium with different blood supply in rats following acute occlusion of the LAD, and can be used as a sensitive and reliable means to follow up the process of left ventricular remodeling.
文摘To assess the normal value of left ventricular twist (LVtw) and examine the changes with normal aging by 2-dimensional ultrasound speckle-tracking imaging (STI), 121 healthy volunteers were divided into three age groups: a youth group (19-45 y old), a middle-age group (46-64 y old ) and an old-age group (≥65 y old). Basal and apical short-axis images of left ventricular were acquired to analyse LV rotation (LVrot) and LVrot velocity. LVtw and LVtw velocity was defined as apical LVrot and LVrot velocity relative to the base. Peak twist (Ptw), twist at aortic valve closure (AVCtw), twist at mitral valve opening (MVOtw), untwisting rate (UntwR), half time of untwisting (HTU), peak twist velocity (PTV), time to peak twist velocity (TPTV), peak untwisting velocity (PUV), time to peak untwisting velocity (TPUV) were separately measured. The results showed that the normal LV performs a wringing motion with a clockwise rotation at the base and a counterclock- wise rotation at the apex (as seen from the apex). The LVtw velocity showed a systolic counterclockwise twist followed by a diastolic clockwise twist. Peak twist develops near the end of systole (96%±4.2% of systole). With aging, Ptw, AVCtw, MVOtw, HTU and PUV increased significantly (P〈0.05) and UntwR decreased significantly (P〈0.05). However, no significant differences in TPUV, PTV and TPTV were noted among the 3 groups (P〉0.05). It is concluded that LV twist can be measured non-invasively by 2-dimensional ultrasound STI imaging. The age-related changes of LVtw should be fully taken into consideration in the assessment of LV function.
文摘This paper presents the system design and experimental results of a 35GHz coherent LFM-CW radar for use in near range two-dimensional imaging. Special techniques, including FM sweep linearization, range-segment processing, system background voltage suppression and dynamic range compression are also presented.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KJCX2-YW-N42)the Key Project of the National Natural Science Foundation of China (Grant No.10734070)+3 种基金the National Natural Science Foundation of China (Grant No.11205157)the National Basic Research Program of China (Grant Nos. 2009CB930804 and 2012CB825800)the Fundamental Research Funds for the Central Universities,China (Grant No. WK2310000021)the China Postdoctoral Science Foundation (Grant No. 2011M501064)
文摘Grating-based X-ray phase contrast imaging has been demonstrated to he an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse- projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensionak phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method.
文摘Summary: This study sought to evaluate the contribution of two-dimensional ultrasound (2D-US) and three-dimensional skeletal imaging ultrasound (3D-SUIS) in the prenatal diagnosis of sirenomelia. Be- tween September 2010 and April 2014, a prospective study was conducted in a single referral center using 3D-SU1S performed after 2D-US in 10 cases of sirenomelia. Diagnostic accuracy and detailed findings were compared with postnatal three-dimensional helical computed tomography (3D-HCT), radiological findings and autopsy. Pregnancy was terminated in all 10 sirenomelia cases, including 9 singletons and I conjoined twin pregnancy, for a total of 5 males and 5 females. These cases of sirenomelia were deter- mined by autopsy and/or chromosomal examination. Initial 2D-US showed that there were 10 cases of oligohydranmios, bilateral renal agenesis, bladder agenesis, single umbilical artery, fusion of the lower limbs and spinal abnormalities; 8 cases of dipus or monopus; 2 cases of apus; and 8 cases of cardiac abnormalities. Subsequent 3D-SUIS showed that there were 9 cases of scoliosis, l0 cases of sacrococ- cygeal vertebra dysplasia, 3 cases of hemivertebra, 1 case of vertebral fusion, 3 cases of spina bifida, and 5 cases of rib abnormalities. 3D-SUIS identified significantly more skeletal abnormalities than did 2D-US, and its accuracy was 79.5% (70/88) compared with 3D-HCT and radiography. 3D-SUIS seems to be a useful complementary method to 2D-US and may improve the accuracy of identifying prenatal skeletal abnormalities related to sirenomelia.
文摘Photon-counting LiDAR using a two-dimensional(2D)array detector has the advantages of high lateral resolution and fast acquisition speed.The non-uniform intensity profile of the illumination beam and non-uniform quantum efficiency of the detectors in the 2D array deteriorate the imaging quality.Herein,we propose a photon-counting LiDAR system that uses a spatial light modulator to control the spatial intensity to compensate for both the non-uniform intensity profile of the illumination beam,and the variation in the quantum efficiency of the detectors in the 2D array.By using a 635 nm peak wavelength and 4 mW average power semiconductor laser,lab-based experiments at a 4.27 m stand-off distance are performed to verify the effectiveness of the proposed method.Compared with the unmodulated method,the standard deviation of the intensity image of the proposed method is reduced from 0.109 to 0.089 for a whiteboard target,with an average signal photon number of 0.006 per pixel.
文摘AIM To investigate the repeatability of proton magnetic resonance spectroscopy in the in vivo measurement of human cerebral levels of choline-containing compounds(Cho).METHODS Two consecutive scans were carried out in six healthy resting subjects at a magnetic field strength of 1.5 T. On each occasion, neurospectroscopy data were collected from 64 voxels using the same 2 D chemical shift imaging(CSI) sequence. The data were analyzed in the same way, using the same software, to obtain the values for each voxel of the ratio of Cho to creatine. The Wilcoxon related-samples signed-rank test, coefficient of variation(CV), repeatability coefficient(RC), and intraclass correlation coefficient(ICC) were used to assess the repeatability. RESULTS The CV ranged from 2.75% to 33.99%, while the minimum RC was 5.68%. There was excellent reproducibility, as judged by significant ICC values, in 26 voxels. Just three voxels showed significant differences according to the Wilcoxon related-samples signed-rank test. CONCLUSION It is therefore concluded that when CSI multivoxel proton neurospectroscopy is used to measure cerebral choline-containing compounds at 1.5 T, the reproducibility is highly acceptable.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB2803900)the National Natural Science Foundation of China(Grant Nos.61974075 and 61704121)+2 种基金the Natural Science Foundation of Tianjin Municipality(Grant Nos.22JCZDJC00460 and 19JCQNJC00700)Tianjin Municipal Education Commission(Grant No.2019KJ028)Fundamental Research Funds for the Central Universities(Grant No.22JCZDJC00460).
文摘Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices.
基金financially supported by the National Natural Science Foundation of China (NSFC)(Nos.22175007 and 21975007)the National Natural Science Foundation for Outstanding Youth Foundation+1 种基金the Fundamental Research Funds for the Central Universities (No.YWF-22-K-101)the National Program for Support of Top-notch Young Professionals and the 111project (Nos.B14009)。
文摘The underwater X-ray imaging technology development is significant to subaqueous target reconnaissance/detection/identification, subfluvial archaeology,submerged resource exploration, etc. As the core of X-ray imaging detection, the scintillator has been plagued by inherent moisture absorption and decomposition, and strict requirements for seamless packaging and waterproofing.Here, we designed a manganese-doped two-dimensional(2D) perovskite scintillator modified by hydrophobic longchain organic amine through the combination of component and doping engineering. The modified perovskites show high water repellency that can be used as an underwater X-ray scintillator. X-ray images of aquatic organisms or other objects with a high spatial resolution of10 lp·mm^(-1) at a big view field(32 mm × 32 mm) were obtained by scintillation screen. This hydrophobic perovskite scintillator based on molecular design is of great promise in underwater X-ray nondestructive testing technology development.
基金supported by the National Magnetic Confinement Fusion Energy Program of China(No.2019YFE03020001)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2021HSC-CIP010)the Fundamental Research Funds for the Central Universities。
文摘Interpreting experimental diagnostics data in tokamaks,while considering non-ideal effects,is challenging due to the complexity of plasmas.To address this challenge,a general synthetic diagnostics(GSD)platform has been established that facilitates microwave imaging reflectometry and electron cyclotron emission imaging.This platform utilizes plasma profiles as input and incorporates the finite-difference time domain,ray tracing and the radiative transfer equation to calculate the propagation of plasma spontaneous radiation and the external electromagnetic field in plasmas.Benchmark tests for classical cases have been conducted to verify the accuracy of every core module in the GSD platform.Finally,2D imaging of a typical electron temperature distribution is reproduced by this platform and the results are consistent with the given real experimental data.This platform also has the potential to be extended to 3D electromagnetic field simulations and other microwave diagnostics such as cross-polarization scattering.
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-096)the National Major Scientific Instruments and Equipment Development Project of China(No.11627901)+1 种基金the National Key Research and Development Program of China(Nos.2021YFF0701202,2021YFA1600703)the National Natural Science Foundation of China(Nos.U1932205,12275343).
文摘The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and ms.This beamline has been specifically designed to facilitate the investigation of a wide range of rapid phenomena,such as the deformation and failure of materials subjected to intense dynamic loads.In addition,it enables the study of high-pressure and high-speed fuel spray processes in automotive engines.The light source of this beamline is a cryogenic permanent magnet undulator(CPMU)that is cooled by liquid nitrogen.This CPMU can generate X-ray photons within an energy range of 8.7-30 keV.The beamline offers two modes of operation:monochromatic beam mode with a liquid nitrogen-cooled double-crystal monochromator(DCM)and pink beam mode with the first crystal of the DCM out of the beam path.Four X-ray imaging methods were implemented in BL16U2:single-pulse ultrafast X-ray imaging,microsecond-resolved X-ray dynamic imaging,millisecond-resolved X-ray dynamic micro-CT,and high-resolution quantitative micro-CT.Furthermore,BL16U2 is equipped with various in situ impact loading systems,such as a split Hopkinson bar system,light gas gun,and fuel spray chamber.Following the completion of the final commissioning in 2021 and subsequent trial operations in 2022,the beamline has been officially available to users from 2023.
基金Supported by the PetroChina Science and Technology Project(2021DJ4002,2022DJ3908)。
文摘Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.
文摘Olympus Corporation developed texture and color enhancement imaging(TXI)as a novel image-enhancing endoscopic technique.This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for gastrointestinal disease identification in the clinical setting.A randomized controlled trial demonstrated improvements in the colorectal adenoma detection rate(ADR)and the mean number of adenomas per procedure(MAP)of TXI compared with those of white-light imaging(WLI)observation(58.7%vs 42.7%,adjusted relative risk 1.35,95%CI:1.17-1.56;1.36 vs 0.89,adjusted incident risk ratio 1.48,95%CI:1.22-1.80,respectively).A cross-over study also showed that the colorectal MAP and ADR in TXI were higher than those in WLI(1.5 vs 1.0,adjusted odds ratio 1.4,95%CI:1.2-1.6;58.2%vs 46.8%,1.5,1.0-2.3,respectively).A randomized controlled trial demonstrated non-inferiority of TXI to narrow-band imaging in the colorectal mean number of adenomas and sessile serrated lesions per procedure(0.29 vs 0.30,difference for non-inferiority-0.01,95%CI:-0.10 to 0.08).A cohort study found that scoring for ulcerative colitis severity using TXI could predict relapse of ulcerative colitis.A cross-sectional study found that TXI improved the gastric cancer detection rate compared to WLI(0.71%vs 0.29%).A cross-sectional study revealed that the sensitivity and accuracy for active Helicobacter pylori gastritis in TXI were higher than those of WLI(69.2%vs 52.5%and 85.3%vs 78.7%,res-pectively).In conclusion,TXI can improve gastrointestinal lesion detection and qualitative diagnosis.Therefore,further studies on the efficacy of TXI in clinical practice are required.
基金supported by the National Natural Science Foundation of China(Grant Nos.42322408,42188101,41974211,and 42074202)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-JSC028)+1 种基金the Strategic Priority Program on Space Science,Chinese Academy of Sciences(Grant Nos.XDA15052500,XDA15350201,and XDA15014800)supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y202045)。
文摘Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images.
基金supported by the Natural Science Foundation of Sichuan Province of China,Nos.2022NSFSC1545 (to YG),2022NSFSC1387 (to ZF)the Natural Science Foundation of Chongqing of China,Nos.CSTB2022NSCQ-LZX0038,cstc2021ycjh-bgzxm0035 (both to XT)+3 种基金the National Natural Science Foundation of China,No.82001378 (to XT)the Joint Project of Chongqing Health Commission and Science and Technology Bureau,No.2023QNXM009 (to XT)the Science and Technology Research Program of Chongqing Education Commission of China,No.KJQN202200435 (to XT)the Chongqing Talents:Exceptional Young Talents Project,No.CQYC202005014 (to XT)。
文摘Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.
基金Supported by National Natural Science Foundation of China (No.60602065)
文摘Due to its low cost, flexibility and convenience for long distance data transfer, plastic scintillation fiber (PSF) have been increasingly used in building detectors or sensors for detecting various radiations and imaging. In this work, the performance of using PSF coupled with charge-coupled devices (CCD) to build area detectors for 2D X-ray imaging is studied. We describe the experimental setup and show the obtained images from CCD. Modulation Transfer Function (MTF) of the PSF array is also presented and compared to earlier reports.