Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whe...Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whereas TiO2 nanotubes can be formed on porous Ti only in the second process. The overhigh current density led to the failure of the formation nanotubes on porous Ti in 0.5%HF electrolyte. TiO2 nanotubes were characterized by SEM and XRD. TiO2 nanotubes on porous Ti were thinner than those on Ti foil. Anatase was formed when TiO2 nanotubes were annealed at 400 °C and fully turned into rutile at 700 °C. To obtain good photodegradation, the optimal heat treatment temperature of TiO2 nanotubes was 450 °C. The porosity of the substrates influenced photodegradation properties. TiO2 nanotubes on porous Ti with 60% porosity had the best photodegradation.展开更多
The surface of Titanium Hydride (TiH 2) is coated by Nano Titanium Dioxide (TiO 2) particles prepared in both of methods of hydrolysis reaction of Ti(OC 4H 9) 4 and base precipitation reaction of Ti(SO 4) 2. ...The surface of Titanium Hydride (TiH 2) is coated by Nano Titanium Dioxide (TiO 2) particles prepared in both of methods of hydrolysis reaction of Ti(OC 4H 9) 4 and base precipitation reaction of Ti(SO 4) 2. TiH 2 coated with nano TiO 2 particles, in which there is an oxidation film on its surface, shown in the experiments, will obviously achieve good effects on releasing hydrogen slowly in high temperature. There are different structures and properties of TiH 2 coated by nano TiO 2 particles prepared in different ways in high temperature, which can influence on releasing hydrogen.展开更多
The effects of welding current on the macro-morphology, microstructure and mechanical properties of tungsten inert gas(TIG) welded AZ31 magnesium alloy joints with TiO2 coating were investigated. The results showed th...The effects of welding current on the macro-morphology, microstructure and mechanical properties of tungsten inert gas(TIG) welded AZ31 magnesium alloy joints with TiO2 coating were investigated. The results showed that the increase of welding current led to the increase in the depth/width ratio and deteriorated the surface appearance of the welded seams with TiO2 coating. The grain size of α-Mg and the amount of granular β-Mg17Al12 particles in the welded seams also increased. The welded joints with TiO2 coating exhibited a deeper weld penetration and larger grain size compared with the welded joint without TiO2 coating. When the welding current was less than 130 A, the ultimate tensile strength of the welded joints with TiO2 coating increased with the increase in welding current and then decreased when the welding current was greater than 130 A. The average microhardness of the heat-affected zone and fusion zone decreased gradually with the increase of welding current.展开更多
A visible-light photocatalyst was prepared by calcination of the hydrolysis product of Ti(SO_4)_2 with ammonia as precipitator. The color of this photocatalyst was vivid yellow. It could absorb light under 550 nm wave...A visible-light photocatalyst was prepared by calcination of the hydrolysis product of Ti(SO_4)_2 with ammonia as precipitator. The color of this photocatalyst was vivid yellow. It could absorb light under 550 nm wavelength. The crystal structure of anatase was characterized by XRD. The structure analysis result of X-ray fluorescence(XRF) shows that doped-nitrogen was presented in the sample. The photocatalytic activities were evaluated using methyl orange and phenol as model pollutants. The photocatalytic activities of samples were increasing gradually with calcination temperature from 400℃ to 700℃ under UV irradiation. It can be seen that the degradation of methyl orange follows zero-order kinetics. However, the calcination temperatures have no significant influence on the degradation of phenol under sunlight. The N-doped catalyst shows higher activity than the bare one under solar irradiation.展开更多
The catalytic activities of TiSiW_(12)O_(40)/TiO_2 in synthesizing ethylester; propyl ester, n-butyl ester; and amyl ester were reported. It was demonstrated thatTiSiW_(12)O_(40)/TiO_2 is an excellent catalyst. Variou...The catalytic activities of TiSiW_(12)O_(40)/TiO_2 in synthesizing ethylester; propyl ester, n-butyl ester; and amyl ester were reported. It was demonstrated thatTiSiW_(12)O_(40)/TiO_2 is an excellent catalyst. Various factors concerned with esterification wereinvestigated. The optimum conditions were found: the mole ratio of alcohol to acid is 1.3:1, themass ratio of catalyst to reactants is 1.5 percent, and the reaction time is 1.0 h. Under theoptimum conditions, the yields are 88.0 percent for ethyl ester, 94.5 percent for propyl ester, 98.6percent for n-butyl ester, 99.1 percent for n-amyl ester, and 96.7 percent for iso-amyl ester,respectively.展开更多
The photosystem Ⅱ(PSⅡ) particles were purified by means of nano-anatase TiO_2 treatment of spinach and studied by spectroscopy. The results show that the electron transport and the oxygen-evolving rate of PSⅡ are a...The photosystem Ⅱ(PSⅡ) particles were purified by means of nano-anatase TiO_2 treatment of spinach and studied by spectroscopy. The results show that the electron transport and the oxygen-evolving rate of PSⅡ are accelerated after it has been treated with nano-anatase TiO_2; the UV-Vis absorption spectrum of PSⅡ particles is increased; the red shift of fluorescence emission peak of PSⅡ is 2 nm; the peak intensity is decreased; the PSⅡ signal Ⅱs of low temperature electron paramagnetic resonanace(EPR) spectrum is intensified under light, and the PSⅡ circular dichroism(CD) spectrum is similar to that of control. It is suggested that nano-anatase TiO_2 might bind to the PSⅡ reaction center complex and intensify the function of the PSⅡ electron donor, however, nano-anatase TiO_2 treatment does not change the configuration of the PSⅡ reaction center complex.展开更多
A new photocatalyst, TiO_2 powder immobilized on polystyrene (PS) thin films,was prepared using a novel method and its photocatalytic activity on the photodegradation ofacridine dye in aqueous solution was tested. By ...A new photocatalyst, TiO_2 powder immobilized on polystyrene (PS) thin films,was prepared using a novel method and its photocatalytic activity on the photodegradation ofacridine dye in aqueous solution was tested. By this method, the crystal form and grain size of theimmobilized TiO_2 were well maintained. Compared with TiO_2 powder, the photocatalytic activity ofTiO_2/PS thin films was not significantly reduced. The catalyst is stable and can be reused severaltimes without the loss of activity, which makes wastewater treatment using this photocatalyticdegradation technique of this way possible in the practical application.展开更多
The nanometer particles of TiO_2 and TiO_2/SiO_2 oxides wereprepared by sol-gel supercritical fluid drying method. The propertiesof TiO_2 and TiO_2/SiO_2 were characterized by means of BET(Brunner-Emmett- Teller metho...The nanometer particles of TiO_2 and TiO_2/SiO_2 oxides wereprepared by sol-gel supercritical fluid drying method. The propertiesof TiO_2 and TiO_2/SiO_2 were characterized by means of BET(Brunner-Emmett- Teller method), TEM (transmission electronmicroscopy), SEM (scanning electron microscopy), XRD (X-ray diffrac-tion) and FTIR (Fourier transform-infrared) techniques. The effectsof different preparation route, prehydrolysis and non-prehydrolysis,on the properties of TiO_2/SiO_2 oxide were also examined.展开更多
SO4^2-/TiO2-MoO3, a novel solid superacid, has been prepared and its catalytic activity at different synthetic conditions was examined with esterification of n-butanoic acid and n-butyl alcohol as probing reaction.The...SO4^2-/TiO2-MoO3, a novel solid superacid, has been prepared and its catalytic activity at different synthetic conditions was examined with esterification of n-butanoic acid and n-butyl alcohol as probing reaction.The optimum conditions were also found, that is, the mass ratio of MoO3 used in the compound is 25%, the calcination temperature 450℃, and the soaked consistency of H2SO4 is 0.5mol.L^-1. Then it was applied in the catalytic synthesis of six similar important ketals and acetals as catalyst and revealed high catalytic activity. Under the condition that the molar ratio of aldehyde/ketone to glycol was 1:1.5, the mass ratio of the catalyst to the reactants was 0.5% and the reaction time 1.0 h, the yield of ketals and acetals reached up to 63.2%. The catalyst can be easily recovered and reused.展开更多
Nd^(3+)-doped TiO_2 powders were prepared by the sol-gel method. Their crystal pattern and parameter, the specific surface area, the surface chemical state of Ti and the ratio of O/Ti were characterized. The results s...Nd^(3+)-doped TiO_2 powders were prepared by the sol-gel method. Their crystal pattern and parameter, the specific surface area, the surface chemical state of Ti and the ratio of O/Ti were characterized. The results show that Nd impurity hinders the crystal transformation, and decreases the relative intensity of (101) peak. The crystallite sizes of Nd^(3+)-doped TiO_2 powders decrease while their specific surface area increase owing to the Nd^(3+) doping. The XPS measurement shows that the content of Ti(Ⅲ) and ratio of O/Ti on their surfaces increase significantly with the increase of Nd^(3+) dosage. The adsorption and photodegradation experiments show that the optimum molar content of Nd^(3+) is 1.2%.展开更多
An innovative photoelectrode, TiO_2/Ti mesh electrode, was prepared by anodisation. In anodisation, 0.5 mol/L H_2SO_4 was used as electrolytic solution, the current had been constantly 1A from the beginning of the oxi...An innovative photoelectrode, TiO_2/Ti mesh electrode, was prepared by anodisation. In anodisation, 0.5 mol/L H_2SO_4 was used as electrolytic solution, the current had been constantly 1A from the beginning of the oxidation until reaching a designed voltage. Results showed that the photocatalytic activity of electrode was better when the designed voltage was 160 V. The morphology and the crystalline texture of the TiO_2 film on mesh electrode were examined by scanning electronic microscopy and Raman spectroscopy respectively. The examination results indicated that the structure and properties of the film depended on anodisation rate, and the anatase was the dominant component under the controlled experimental conditions. Degradation of Rhodamine B in photocatalytic (PC) and photoelectrocatalytic (PEC) reaction was investigated.展开更多
Two kinds of TiO_2 nanometer thin films were prepared on stainless steel bythe reverse micellar and sol-gel methods, respectively. The calcined TiO_ 2 thin films werecharacterized by X-ray diffraction (XRD), atomic fo...Two kinds of TiO_2 nanometer thin films were prepared on stainless steel bythe reverse micellar and sol-gel methods, respectively. The calcined TiO_ 2 thin films werecharacterized by X-ray diffraction (XRD), atomic force microscopy (AFM), BET surface area and X-rayphotoelectron spectroscopy (XPS). Photocatalytic activity was evaluated by photocatalyticdecoloration of methyl orange aqueous solution. The results showed that the TiO_2 thin filmsprepared by reverse micellar method (designated as RM-TiO_2 films) showed higher photocatalyticactivity than those by sol-gel method (designated as SG-TiO_2 films). This is attributed to the factthat the former is composed of smaller monodispersed spherical particles with a size of about 15 nmand possesses higher surface areas.展开更多
Supported ionic liquid(IL) catalysts [Cmim]PMoO/Am TiO(amorphous TiO) were synthesized through a one-step method for extraction coupled catalytic oxidative desulfurization(ECODS) system. Characterizations such as FTIR...Supported ionic liquid(IL) catalysts [Cmim]PMoO/Am TiO(amorphous TiO) were synthesized through a one-step method for extraction coupled catalytic oxidative desulfurization(ECODS) system. Characterizations such as FTIR, DRS,wide-angle XRD, Nadsorption–desorption and XPS were applied to analyze the morphology and Keggin structure of the catalysts. In ECODS with hydrogen peroxide as the oxidant, it was found that ILs with longer alkyl chains in the cationic moiety had a better effect on the removal of dibenzothiophene. The desulfurization could reach 100% under optimal conditions, and GC–MS analysis was employed to detect the oxidized product after the reaction. Factors affecting the desulfurization efficiencies were discussed, and a possible mechanism was proposed. In addition, cyclic experiments were also conducted to investigate the recyclability of the supported catalyst. The catalytic activity of [Cmim]PMoO/Am TiOonly dropped from 100% to 92.9% after ten cycles, demonstrating the good recycling performance of the catalyst and its potential industrial application.展开更多
The nanometer and ordinary anatase titanium dioxide(TiO_2) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalyti...The nanometer and ordinary anatase titanium dioxide(TiO_2) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalytic degradation effect of methyl orange in the presence of TiO_2 powder were much better than that without TiO_2, but the sonocatalytic activity of the nanometer anatase TiO_2 particle was obviously higher than that of ordinary anatase TiO_2 particle. Although there are many factors influencing sonocatalytic degradation of methyl orange, the experimental results showed that the best degradation ratio of methyl orange could be obtained when the experimental conditions were: initial concentration 15 mg/L, nanometer anatase TiO_2 adding amount 750 mg/L, ultrasonic frequency 40 kHz, output power 50 W, pH = 3.0 and temperature 40℃ within 150 min. In addition, the catalytic activity of reused nanometer anatase TiO_2 catalyst was also studied and found to decline gradually comparing with initial nanometer anatase TiO_2 catalyst. All experiments indicated that the method of the sonocatalytic degradation of organic pollutants in the presence of TiO_2 powder was an advisable choice for non- or low-transparent organic wastewaters.展开更多
Photocatalyst was prepared by immobilizing TiO2 on glass beads using the traditional sol-gel method. Ultraviolet light (UV) produced by pulsed streamer discharge was then used to induce photocatalytic activity of Ti...Photocatalyst was prepared by immobilizing TiO2 on glass beads using the traditional sol-gel method. Ultraviolet light (UV) produced by pulsed streamer discharge was then used to induce photocatalytic activity of TiO2 photocatalyst. Decolouration efficiency of the representative azo dye (acid orange 7, AOT) was investigated using the synergistic system of pulsed streamer discharge plasma and TiO2 photocatalysis. The obtained results showed that the decolouration rate of AO7 could be increased by 16.7% under the condition of adding supported TiO2 in the pulsed streamer discharge system, compared to that in the sole pulsed streamer discharge plasma system, due to the synergistic effect of pulsed streamer discharge and TiO2 photocatalysis induced by pulsed streamer discharge. The synergistic system of pulsed streamer discharge and TiO2 photocatalyst was found to have more reactive radicals for degradation of organic compounds in water.展开更多
TiO_2 nanoparticles with different phases are prepared by hydrolysis oftitanium tetrabutoxide in the presence of HC1. The composition and microstructure of the resultingsamples are studied by XRD and TEM. These result...TiO_2 nanoparticles with different phases are prepared by hydrolysis oftitanium tetrabutoxide in the presence of HC1. The composition and microstructure of the resultingsamples are studied by XRD and TEM. These results show that the range of particle size of TiO_2 isfrom 20 to 30 nm. The mechanism of TiO_2 photocatalysis reaction has been discussed extensively.Photocatalytic activities of nanometer TiO_2 are also evaluated by degradation of the crystal violetsolution. Experimental results indicate that the synergistic action of H_2O_2 and ultrasonic wavegreatly enhances photo-catalytic reaction of TiO_2.展开更多
光电化学(PEC)分解水是一种清洁可持续的获取氢燃料的方法,其中产氧半反应(OER)是制约整个水分解过程效率的关键步骤.因此,光阳极的性能是决定太阳能到氢能转化效率的关键因素.在各种水氧化光阳极材料中,赤铁矿(α-Fe_(2)O_(3))因具有...光电化学(PEC)分解水是一种清洁可持续的获取氢燃料的方法,其中产氧半反应(OER)是制约整个水分解过程效率的关键步骤.因此,光阳极的性能是决定太阳能到氢能转化效率的关键因素.在各种水氧化光阳极材料中,赤铁矿(α-Fe_(2)O_(3))因具有良好的化学稳定性、合适的带隙(~2.1 eV)、无毒、储量丰富等优点而成为最有前途的光阳极材料之一.然而,α-Fe_(2)O_(3)丰富的受体表面态和缓慢的水氧化动力学导致光生电荷复合严重,限制了其在光电化学中的实际应用.因此,有必要对α-Fe_(2)O_(3)进行表面工程设计以提高水氧化效率.本文提出了一种新方法,以金属有机框架(Ti-MOFs)为模板,在Ti-Fe_(2)O_(3)表面煅烧合成TiO_(2)层,然后将富活性位点的ZIF-67加载在TiO_(2)/Ti-Fe_(2)O_(3)上作为助催化剂,制备出具有较好光电化学性能的ZIF-67/TiO_(2)/Ti-Fe_(2)O_(3)复合光阳极.X射线衍射、高分辨透射电镜、X射线光电子能谱和拉曼光谱等表征结果证实成功合成了ZIF-67/TiO_(2)/Ti-Fe_(2)O_(3).同时,氮气等温吸附脱附曲线和表面接触角测试结果表明,MOFs衍生的TiO_(2)为介孔材料.采用表面光伏技术、光致发光光谱、飞秒-瞬态吸收光谱和电化学阻抗谱分析,研究了光生电荷的分离和复合行为.结果表明,MOFs衍生的TiO_(2)不仅可以作为钝化层有效抑制了表面复合,还作为Ti-Fe_(2)O_(3)的电子阻挡层,显著减少了电子向表面的流失,从而大大提高了Ti-Fe_(2)O_(3)表面和体相的电荷分离效率.进一步的累积电荷量测试、电化学阻抗谱和Bode图分析显示,负载MOFs衍生TiO_(2)后,可以明显促进光生空穴向电解质的注入,其多孔结构也可以增加反应接触面积,这有利于光生电荷在固液界面传输.此外,理论计算结果表明,Ti-Fe_(2)O_(3)水氧化速控步骤的能垒(ΔG=3.38 eV)明显高于TiO_(2)(ΔG=1.67 eV),说明OER更容易在TiO_(2)/Ti-Fe_(2)O_(3)表面发生,这与其光电流密度结果一致.为进一步提高反应活性和加快水氧化动力学,负载助催化剂ZIF-67后,ZIF-67/TiO_(2)/Ti-Fe_(2)O_(3)复合光阳极实现了较好的光电化学性能,其在1.23 V vs.RHE时光电流密度高达4.04 mA cm^(‒2),是Ti-Fe_(2)O_(3)的9.3倍,并且复合光阳极的入射光子电流转换效率和空穴注入效率分别达到93%(390 nm)和91%.综上所述,本研究通过MOFs衍生的TiO_(2)和ZIF-67助催化剂改性α-Fe_(2)O_(3)光阳极,显著提升了其光电化学水氧化性能.其中,MOFs衍生TiO_(2)不仅优化了电荷分离,还促进了光生空穴的注入,从而显著提高其光电化学水氧化性能.本研究为构筑高性能的有机-无机杂化光阳极提供了新思路.展开更多
Nanocrystalline TiO2 was prepared by high frequency plasma chemical vapor deposition (HF-PCVD). The effects of additive AlCl3 on crystal phase, particle size and microstructurai parameters of TiO2 nanocrystallites wer...Nanocrystalline TiO2 was prepared by high frequency plasma chemical vapor deposition (HF-PCVD). The effects of additive AlCl3 on crystal phase, particle size and microstructurai parameters of TiO2 nanocrystallites were investigated by X-ray diffraction(XRD) and transmission electron microscopy (TEM). The nanocrystallites obtained experimentally are mixture of anatase and rutile, the uniform diameters of particles are about 30 nm. The phase transformation from anatase to rutile was accelerated by AlCl3, and rutile content is increased from 26.7 wt pct to 53.6 wt pct with increasing of addition of AlCl3 from 0.0 wt pct to 5.0 wt pct. The particle size is reduced and the size distribution becomes very narrow. The crystal lattice constants have the trend to decrease, and celi volumes appear as shrinkable.展开更多
Photocatalytic oxidation kinetics of thiophene in n-octane/water extraction system was studied with fluorine and ferric ion codoped nano-TiO_2(nano-F^-/Fe^(3+)/TiO_2) powders used as the photocatalyst.Effects of initi...Photocatalytic oxidation kinetics of thiophene in n-octane/water extraction system was studied with fluorine and ferric ion codoped nano-TiO_2(nano-F^-/Fe^(3+)/TiO_2) powders used as the photocatalyst.Effects of initial concentration of thiophene and additional dosage of F^-/Fe^(3+)/TiO_2 on the reaction rate constant and half-life were investigated.The results showed that the appropriately added dosage of F^-/Fe^(3+)/TiO_2 was 0.1 g in the 100-mL reaction system and the photooxidative kinetics of thiophene in the presence of F^-/Fe^(3+)/TiO_2 catalyst was of first-order with a rate constant of 0.6508 h^(-1) and a half-life of 1.0651 h.The desulfurization rate of thiophene was 98.1%in 5 h and the sulfur content could be reduced from 800 ppm to 15 ppm.The reaction rate constant increased with a decreasing initial concentration of thiophene.展开更多
基金Project(1254G024)supported by the Young Core Instructor Foundation from Heilongjiang Educational Committee,ChinaProject(2012RFQXS113)supported by Scientific and Technological Innovation Talents of Harbin,China
文摘Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whereas TiO2 nanotubes can be formed on porous Ti only in the second process. The overhigh current density led to the failure of the formation nanotubes on porous Ti in 0.5%HF electrolyte. TiO2 nanotubes were characterized by SEM and XRD. TiO2 nanotubes on porous Ti were thinner than those on Ti foil. Anatase was formed when TiO2 nanotubes were annealed at 400 °C and fully turned into rutile at 700 °C. To obtain good photodegradation, the optimal heat treatment temperature of TiO2 nanotubes was 450 °C. The porosity of the substrates influenced photodegradation properties. TiO2 nanotubes on porous Ti with 60% porosity had the best photodegradation.
文摘The surface of Titanium Hydride (TiH 2) is coated by Nano Titanium Dioxide (TiO 2) particles prepared in both of methods of hydrolysis reaction of Ti(OC 4H 9) 4 and base precipitation reaction of Ti(SO 4) 2. TiH 2 coated with nano TiO 2 particles, in which there is an oxidation film on its surface, shown in the experiments, will obviously achieve good effects on releasing hydrogen slowly in high temperature. There are different structures and properties of TiH 2 coated by nano TiO 2 particles prepared in different ways in high temperature, which can influence on releasing hydrogen.
基金Project(51375511)supported by the National Natural Science Foundation of ChinaProjects(CDJZR12138801,CDJZR11135501,CDJZR13130033)supported by the Fundamental Research Funds for Central Universities of China
文摘The effects of welding current on the macro-morphology, microstructure and mechanical properties of tungsten inert gas(TIG) welded AZ31 magnesium alloy joints with TiO2 coating were investigated. The results showed that the increase of welding current led to the increase in the depth/width ratio and deteriorated the surface appearance of the welded seams with TiO2 coating. The grain size of α-Mg and the amount of granular β-Mg17Al12 particles in the welded seams also increased. The welded joints with TiO2 coating exhibited a deeper weld penetration and larger grain size compared with the welded joint without TiO2 coating. When the welding current was less than 130 A, the ultimate tensile strength of the welded joints with TiO2 coating increased with the increase in welding current and then decreased when the welding current was greater than 130 A. The average microhardness of the heat-affected zone and fusion zone decreased gradually with the increase of welding current.
文摘A visible-light photocatalyst was prepared by calcination of the hydrolysis product of Ti(SO_4)_2 with ammonia as precipitator. The color of this photocatalyst was vivid yellow. It could absorb light under 550 nm wavelength. The crystal structure of anatase was characterized by XRD. The structure analysis result of X-ray fluorescence(XRF) shows that doped-nitrogen was presented in the sample. The photocatalytic activities were evaluated using methyl orange and phenol as model pollutants. The photocatalytic activities of samples were increasing gradually with calcination temperature from 400℃ to 700℃ under UV irradiation. It can be seen that the degradation of methyl orange follows zero-order kinetics. However, the calcination temperatures have no significant influence on the degradation of phenol under sunlight. The N-doped catalyst shows higher activity than the bare one under solar irradiation.
文摘The catalytic activities of TiSiW_(12)O_(40)/TiO_2 in synthesizing ethylester; propyl ester, n-butyl ester; and amyl ester were reported. It was demonstrated thatTiSiW_(12)O_(40)/TiO_2 is an excellent catalyst. Various factors concerned with esterification wereinvestigated. The optimum conditions were found: the mole ratio of alcohol to acid is 1.3:1, themass ratio of catalyst to reactants is 1.5 percent, and the reaction time is 1.0 h. Under theoptimum conditions, the yields are 88.0 percent for ethyl ester, 94.5 percent for propyl ester, 98.6percent for n-butyl ester, 99.1 percent for n-amyl ester, and 96.7 percent for iso-amyl ester,respectively.
文摘The photosystem Ⅱ(PSⅡ) particles were purified by means of nano-anatase TiO_2 treatment of spinach and studied by spectroscopy. The results show that the electron transport and the oxygen-evolving rate of PSⅡ are accelerated after it has been treated with nano-anatase TiO_2; the UV-Vis absorption spectrum of PSⅡ particles is increased; the red shift of fluorescence emission peak of PSⅡ is 2 nm; the peak intensity is decreased; the PSⅡ signal Ⅱs of low temperature electron paramagnetic resonanace(EPR) spectrum is intensified under light, and the PSⅡ circular dichroism(CD) spectrum is similar to that of control. It is suggested that nano-anatase TiO_2 might bind to the PSⅡ reaction center complex and intensify the function of the PSⅡ electron donor, however, nano-anatase TiO_2 treatment does not change the configuration of the PSⅡ reaction center complex.
基金This project is financially supported by the Natural Science Foundation of China (QT program)
文摘A new photocatalyst, TiO_2 powder immobilized on polystyrene (PS) thin films,was prepared using a novel method and its photocatalytic activity on the photodegradation ofacridine dye in aqueous solution was tested. By this method, the crystal form and grain size of theimmobilized TiO_2 were well maintained. Compared with TiO_2 powder, the photocatalytic activity ofTiO_2/PS thin films was not significantly reduced. The catalyst is stable and can be reused severaltimes without the loss of activity, which makes wastewater treatment using this photocatalyticdegradation technique of this way possible in the practical application.
基金Supported by PetroChina Company Limited (990801-21-2).
文摘The nanometer particles of TiO_2 and TiO_2/SiO_2 oxides wereprepared by sol-gel supercritical fluid drying method. The propertiesof TiO_2 and TiO_2/SiO_2 were characterized by means of BET(Brunner-Emmett- Teller method), TEM (transmission electronmicroscopy), SEM (scanning electron microscopy), XRD (X-ray diffrac-tion) and FTIR (Fourier transform-infrared) techniques. The effectsof different preparation route, prehydrolysis and non-prehydrolysis,on the properties of TiO_2/SiO_2 oxide were also examined.
文摘SO4^2-/TiO2-MoO3, a novel solid superacid, has been prepared and its catalytic activity at different synthetic conditions was examined with esterification of n-butanoic acid and n-butyl alcohol as probing reaction.The optimum conditions were also found, that is, the mass ratio of MoO3 used in the compound is 25%, the calcination temperature 450℃, and the soaked consistency of H2SO4 is 0.5mol.L^-1. Then it was applied in the catalytic synthesis of six similar important ketals and acetals as catalyst and revealed high catalytic activity. Under the condition that the molar ratio of aldehyde/ketone to glycol was 1:1.5, the mass ratio of the catalyst to the reactants was 0.5% and the reaction time 1.0 h, the yield of ketals and acetals reached up to 63.2%. The catalyst can be easily recovered and reused.
文摘Nd^(3+)-doped TiO_2 powders were prepared by the sol-gel method. Their crystal pattern and parameter, the specific surface area, the surface chemical state of Ti and the ratio of O/Ti were characterized. The results show that Nd impurity hinders the crystal transformation, and decreases the relative intensity of (101) peak. The crystallite sizes of Nd^(3+)-doped TiO_2 powders decrease while their specific surface area increase owing to the Nd^(3+) doping. The XPS measurement shows that the content of Ti(Ⅲ) and ratio of O/Ti on their surfaces increase significantly with the increase of Nd^(3+) dosage. The adsorption and photodegradation experiments show that the optimum molar content of Nd^(3+) is 1.2%.
基金TheScientificResearchFoundationofHarbinInstituteofTechnology (No .HIT .2 0 0 1.5 6)
文摘An innovative photoelectrode, TiO_2/Ti mesh electrode, was prepared by anodisation. In anodisation, 0.5 mol/L H_2SO_4 was used as electrolytic solution, the current had been constantly 1A from the beginning of the oxidation until reaching a designed voltage. Results showed that the photocatalytic activity of electrode was better when the designed voltage was 160 V. The morphology and the crystalline texture of the TiO_2 film on mesh electrode were examined by scanning electronic microscopy and Raman spectroscopy respectively. The examination results indicated that the structure and properties of the film depended on anodisation rate, and the anatase was the dominant component under the controlled experimental conditions. Degradation of Rhodamine B in photocatalytic (PC) and photoelectrocatalytic (PEC) reaction was investigated.
基金This project is financially supported by the National Natural Science Foundation of China (No.s 50272049, 50072016) The Excellent Young Teachers Program of MOE, China (No. (2002)350)
文摘Two kinds of TiO_2 nanometer thin films were prepared on stainless steel bythe reverse micellar and sol-gel methods, respectively. The calcined TiO_ 2 thin films werecharacterized by X-ray diffraction (XRD), atomic force microscopy (AFM), BET surface area and X-rayphotoelectron spectroscopy (XPS). Photocatalytic activity was evaluated by photocatalyticdecoloration of methyl orange aqueous solution. The results showed that the TiO_2 thin filmsprepared by reverse micellar method (designated as RM-TiO_2 films) showed higher photocatalyticactivity than those by sol-gel method (designated as SG-TiO_2 films). This is attributed to the factthat the former is composed of smaller monodispersed spherical particles with a size of about 15 nmand possesses higher surface areas.
基金financially supported by the National Natural Science Foundation of China (Nos. 21576122, 21646001, 21506080)Natural Science Foundation of Jiangsu Province (Nos. BK20150485, BK20170528)+2 种基金China Postdoctoral Science Foundation (2017M611727)Jiangsu Planned Projects for Postdoctoral Research Funds (1701104B)supported by the Student Innovation and Entrepreneurship Training Program (201810299332 W)
文摘Supported ionic liquid(IL) catalysts [Cmim]PMoO/Am TiO(amorphous TiO) were synthesized through a one-step method for extraction coupled catalytic oxidative desulfurization(ECODS) system. Characterizations such as FTIR, DRS,wide-angle XRD, Nadsorption–desorption and XPS were applied to analyze the morphology and Keggin structure of the catalysts. In ECODS with hydrogen peroxide as the oxidant, it was found that ILs with longer alkyl chains in the cationic moiety had a better effect on the removal of dibenzothiophene. The desulfurization could reach 100% under optimal conditions, and GC–MS analysis was employed to detect the oxidized product after the reaction. Factors affecting the desulfurization efficiencies were discussed, and a possible mechanism was proposed. In addition, cyclic experiments were also conducted to investigate the recyclability of the supported catalyst. The catalytic activity of [Cmim]PMoO/Am TiOonly dropped from 100% to 92.9% after ten cycles, demonstrating the good recycling performance of the catalyst and its potential industrial application.
基金Foundation item: The National Natural Science Foundation of China(No. 20371023)
文摘The nanometer and ordinary anatase titanium dioxide(TiO_2) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalytic degradation effect of methyl orange in the presence of TiO_2 powder were much better than that without TiO_2, but the sonocatalytic activity of the nanometer anatase TiO_2 particle was obviously higher than that of ordinary anatase TiO_2 particle. Although there are many factors influencing sonocatalytic degradation of methyl orange, the experimental results showed that the best degradation ratio of methyl orange could be obtained when the experimental conditions were: initial concentration 15 mg/L, nanometer anatase TiO_2 adding amount 750 mg/L, ultrasonic frequency 40 kHz, output power 50 W, pH = 3.0 and temperature 40℃ within 150 min. In addition, the catalytic activity of reused nanometer anatase TiO_2 catalyst was also studied and found to decline gradually comparing with initial nanometer anatase TiO_2 catalyst. All experiments indicated that the method of the sonocatalytic degradation of organic pollutants in the presence of TiO_2 powder was an advisable choice for non- or low-transparent organic wastewaters.
基金supported by the National Natural Science Foundation Committee of China(No.20377006)Foundation of Education Ministry of China(No.2005141002)
文摘Photocatalyst was prepared by immobilizing TiO2 on glass beads using the traditional sol-gel method. Ultraviolet light (UV) produced by pulsed streamer discharge was then used to induce photocatalytic activity of TiO2 photocatalyst. Decolouration efficiency of the representative azo dye (acid orange 7, AOT) was investigated using the synergistic system of pulsed streamer discharge plasma and TiO2 photocatalysis. The obtained results showed that the decolouration rate of AO7 could be increased by 16.7% under the condition of adding supported TiO2 in the pulsed streamer discharge system, compared to that in the sole pulsed streamer discharge plasma system, due to the synergistic effect of pulsed streamer discharge and TiO2 photocatalysis induced by pulsed streamer discharge. The synergistic system of pulsed streamer discharge and TiO2 photocatalyst was found to have more reactive radicals for degradation of organic compounds in water.
文摘TiO_2 nanoparticles with different phases are prepared by hydrolysis oftitanium tetrabutoxide in the presence of HC1. The composition and microstructure of the resultingsamples are studied by XRD and TEM. These results show that the range of particle size of TiO_2 isfrom 20 to 30 nm. The mechanism of TiO_2 photocatalysis reaction has been discussed extensively.Photocatalytic activities of nanometer TiO_2 are also evaluated by degradation of the crystal violetsolution. Experimental results indicate that the synergistic action of H_2O_2 and ultrasonic wavegreatly enhances photo-catalytic reaction of TiO_2.
文摘光电化学(PEC)分解水是一种清洁可持续的获取氢燃料的方法,其中产氧半反应(OER)是制约整个水分解过程效率的关键步骤.因此,光阳极的性能是决定太阳能到氢能转化效率的关键因素.在各种水氧化光阳极材料中,赤铁矿(α-Fe_(2)O_(3))因具有良好的化学稳定性、合适的带隙(~2.1 eV)、无毒、储量丰富等优点而成为最有前途的光阳极材料之一.然而,α-Fe_(2)O_(3)丰富的受体表面态和缓慢的水氧化动力学导致光生电荷复合严重,限制了其在光电化学中的实际应用.因此,有必要对α-Fe_(2)O_(3)进行表面工程设计以提高水氧化效率.本文提出了一种新方法,以金属有机框架(Ti-MOFs)为模板,在Ti-Fe_(2)O_(3)表面煅烧合成TiO_(2)层,然后将富活性位点的ZIF-67加载在TiO_(2)/Ti-Fe_(2)O_(3)上作为助催化剂,制备出具有较好光电化学性能的ZIF-67/TiO_(2)/Ti-Fe_(2)O_(3)复合光阳极.X射线衍射、高分辨透射电镜、X射线光电子能谱和拉曼光谱等表征结果证实成功合成了ZIF-67/TiO_(2)/Ti-Fe_(2)O_(3).同时,氮气等温吸附脱附曲线和表面接触角测试结果表明,MOFs衍生的TiO_(2)为介孔材料.采用表面光伏技术、光致发光光谱、飞秒-瞬态吸收光谱和电化学阻抗谱分析,研究了光生电荷的分离和复合行为.结果表明,MOFs衍生的TiO_(2)不仅可以作为钝化层有效抑制了表面复合,还作为Ti-Fe_(2)O_(3)的电子阻挡层,显著减少了电子向表面的流失,从而大大提高了Ti-Fe_(2)O_(3)表面和体相的电荷分离效率.进一步的累积电荷量测试、电化学阻抗谱和Bode图分析显示,负载MOFs衍生TiO_(2)后,可以明显促进光生空穴向电解质的注入,其多孔结构也可以增加反应接触面积,这有利于光生电荷在固液界面传输.此外,理论计算结果表明,Ti-Fe_(2)O_(3)水氧化速控步骤的能垒(ΔG=3.38 eV)明显高于TiO_(2)(ΔG=1.67 eV),说明OER更容易在TiO_(2)/Ti-Fe_(2)O_(3)表面发生,这与其光电流密度结果一致.为进一步提高反应活性和加快水氧化动力学,负载助催化剂ZIF-67后,ZIF-67/TiO_(2)/Ti-Fe_(2)O_(3)复合光阳极实现了较好的光电化学性能,其在1.23 V vs.RHE时光电流密度高达4.04 mA cm^(‒2),是Ti-Fe_(2)O_(3)的9.3倍,并且复合光阳极的入射光子电流转换效率和空穴注入效率分别达到93%(390 nm)和91%.综上所述,本研究通过MOFs衍生的TiO_(2)和ZIF-67助催化剂改性α-Fe_(2)O_(3)光阳极,显著提升了其光电化学水氧化性能.其中,MOFs衍生TiO_(2)不仅优化了电荷分离,还促进了光生空穴的注入,从而显著提高其光电化学水氧化性能.本研究为构筑高性能的有机-无机杂化光阳极提供了新思路.
文摘Nanocrystalline TiO2 was prepared by high frequency plasma chemical vapor deposition (HF-PCVD). The effects of additive AlCl3 on crystal phase, particle size and microstructurai parameters of TiO2 nanocrystallites were investigated by X-ray diffraction(XRD) and transmission electron microscopy (TEM). The nanocrystallites obtained experimentally are mixture of anatase and rutile, the uniform diameters of particles are about 30 nm. The phase transformation from anatase to rutile was accelerated by AlCl3, and rutile content is increased from 26.7 wt pct to 53.6 wt pct with increasing of addition of AlCl3 from 0.0 wt pct to 5.0 wt pct. The particle size is reduced and the size distribution becomes very narrow. The crystal lattice constants have the trend to decrease, and celi volumes appear as shrinkable.
文摘Photocatalytic oxidation kinetics of thiophene in n-octane/water extraction system was studied with fluorine and ferric ion codoped nano-TiO_2(nano-F^-/Fe^(3+)/TiO_2) powders used as the photocatalyst.Effects of initial concentration of thiophene and additional dosage of F^-/Fe^(3+)/TiO_2 on the reaction rate constant and half-life were investigated.The results showed that the appropriately added dosage of F^-/Fe^(3+)/TiO_2 was 0.1 g in the 100-mL reaction system and the photooxidative kinetics of thiophene in the presence of F^-/Fe^(3+)/TiO_2 catalyst was of first-order with a rate constant of 0.6508 h^(-1) and a half-life of 1.0651 h.The desulfurization rate of thiophene was 98.1%in 5 h and the sulfur content could be reduced from 800 ppm to 15 ppm.The reaction rate constant increased with a decreasing initial concentration of thiophene.