The feasibility of a parameter identification method based on symbolic time series analysis (STSA) and the adaptive immune clonal selection algorithm (AICSA) is studied. Data symbolization by using STSA alleviates the...The feasibility of a parameter identification method based on symbolic time series analysis (STSA) and the adaptive immune clonal selection algorithm (AICSA) is studied. Data symbolization by using STSA alleviates the effects of harmful noise in raw acceleration data. The effect of the parameters in STSA is theoretically evaluated and numerically verified. AICSA is employed to minimize the error between the state sequence histogram (SSH) that is transformed from raw acceleration data by STSA. The proposed methodology is evaluated by comparing it with AICSA using raw acceleration data. AICSA combining STSA is proved to be a powerful tool for identifying unknown parameters of structural systems even when the data is contaminated with relatively large amounts of noise.展开更多
In order to ease congestion and ground delays in major hub airports, an aircraft taxiing scheduling optimization model is proposed with schedule time as the object function. In the new model, the idea of a classical j...In order to ease congestion and ground delays in major hub airports, an aircraft taxiing scheduling optimization model is proposed with schedule time as the object function. In the new model, the idea of a classical job shop-schedule problem is adopted and three types of special aircraft-taxi conflicts are considered in the constraints. To solve such nondeterministic polynomial time-complex problems, the immune clonal selection algorithm(ICSA) is introduced. The simulation results in a congested hour of Beijing Capital International Airport show that, compared with the first-come-first-served(FCFS) strategy, the optimization-planning strategy reduces the total scheduling time by 13.6 min and the taxiing time per aircraft by 45.3 s, which improves the capacity of the runway and the efficiency of airport operations.展开更多
A directional filter algorithm for intensity synthetic aperture radar (SAR) image based on nonsubsampled contourlet transform (NSCT) and immune clonal selection (ICS) is presented. The proposed filter mainly foc...A directional filter algorithm for intensity synthetic aperture radar (SAR) image based on nonsubsampled contourlet transform (NSCT) and immune clonal selection (ICS) is presented. The proposed filter mainly focuses on exploiting different features of edges and noises by NSCT. Furthermore, ICS strategy is introduced to optimize threshold parameter and amplify parameter adaptively. Numerical experiments on real SAR images show that there are improvements in both visual effects and objective indexes.展开更多
In order to control the locomotive wheel(axle) load distribution, a shimming process to adjust the locomotive secondary spring loads was heretofore developed. An immune dominance clonal selection multi-objective algor...In order to control the locomotive wheel(axle) load distribution, a shimming process to adjust the locomotive secondary spring loads was heretofore developed. An immune dominance clonal selection multi-objective algorithm based on the artificial immune system was presented to further improve the performance of the optimization algorithm for locomotive secondary spring load adjustment, especially to solve the lack of control on the output shim quantity. The algorithm was designed into a two-level optimization structure according to the preferences of the problem, and the priori knowledge of the problem was used as the immune dominance. Experiments on various types of locomotives show that owing to the novel algorithm, the shim quantity is cut down by 30% 60% and the calculation time is about 90% less while the secondary spring load distribution is controlled on the same level as before. The application of this optimization algorithm can significantly improve the availability and efficiency of the secondary spring adjustment process.展开更多
This hybrid methodology for structural health monitoring (SHM) is based on immune algorithms (IAs) and symbolic time series analysis (STSA). Real-valued negative selection (RNS) is used to detect damage detection and ...This hybrid methodology for structural health monitoring (SHM) is based on immune algorithms (IAs) and symbolic time series analysis (STSA). Real-valued negative selection (RNS) is used to detect damage detection and adaptive immune clonal selection algorithm (AICSA) is used to localize and quantify the damage. Data symbolization by using STSA alleviates the effects of harmful noise in raw acceleration data. This paper explains the mathematical basis of STSA and the procedure of the hybrid methodology. It also describes the results of an simulation experiment on a five-story shear frame structure that indicated the hybrid strategy can efficiently and precisely detect, localize and quantify damage to civil engineering structures in the presence of measurement noise.展开更多
This work deals the application of the artificial immune system to discriminate between healthy and people with Parkinson’s disease (PWP). As the symptoms of Parkinson’s disease (PD) occur gradually and mostly targe...This work deals the application of the artificial immune system to discriminate between healthy and people with Parkinson’s disease (PWP). As the symptoms of Parkinson’s disease (PD) occur gradually and mostly targeting the elderly people for whom physical visits to the clinic are inconvenient and costly, telemonitoring of the disease using measurements of dysphonia (vocal features) has a vital role in its early diagnosis. Taking inspiration from natural immune systems, we try to grab useful properties such as automatic recognition, memorization and adaptation. The developed algorithms have as a base the algorithm of training bio inspired CLONCLAS. The results obtained are satisfactory and show a great reliability of the approach.展开更多
The performance of the classical clustering algorithm is not always satisfied with the high-dimensional datasets, which make clustering method limited in many application. To solve this problem, clustering method with...The performance of the classical clustering algorithm is not always satisfied with the high-dimensional datasets, which make clustering method limited in many application. To solve this problem, clustering method with Projection Pursuit dimension reduction based on Immune Clonal Selection Algorithm (ICSA-PP) is proposed in this paper. Projection pursuit strategy can maintain consistent Euclidean distances between points in the low-dimensional embeddings where the ICSA is used to search optimizing projection direction. The proposed algorithm can converge quickly with less iteration to reduce dimension of some high-dimensional datasets, and in which space, K-mean clustering algorithm is used to partition the reduced data. The experiment results on UCI data show that the presented method can search quicker to optimize projection direction than Genetic Algorithm (GA) and it has better clustering results compared with traditional linear dimension reduction method for Principle Component Analysis (PCA).展开更多
It is necessary for mine countermeasure systems to recognise the model of a water mine before destroying because the destroying measures to be taken must be determined according to mine model. In this paper, an immune...It is necessary for mine countermeasure systems to recognise the model of a water mine before destroying because the destroying measures to be taken must be determined according to mine model. In this paper, an immune neural network (INN) along with water mine model recognition system based on multi-agent system is proposed. A modified clonal selection algorithm for constructing such an INN is presented based on clonal selection principle. The INN is a two-layer Boolean network whose number of outputs is adaptable according to the task and the affinity threshold. Adjusting the affinity threshold can easily control different recognition precision, and the affinity threshold also can control the capability of noise tolerance.展开更多
Based on the mechanisms of immunodominance and clonal selection theory, we propose a new multiobjective optimization algorithm, immune dominance clonal multiobjective algorithm (IDCMA). IDCMA is unique in that its f...Based on the mechanisms of immunodominance and clonal selection theory, we propose a new multiobjective optimization algorithm, immune dominance clonal multiobjective algorithm (IDCMA). IDCMA is unique in that its fitness values of current dominated individuals are assigned as the values of a custom distance measure, termed as Ab-Ab affinity, between the dominated individuals and one of the nondominated individuals found so far. According to the values of Ab-Ab affinity, all dominated individuals (antibodies) are divided into two kinds, subdominant antibodies and cryptic antibodies. Moreover, local search only applies to the subdominant antibodies, while the cryptic antibodies are redundant and have no function during local search, but they can become subdominant (active) antibodies during the subsequent evolution. Furthermore, a new immune operation, clonal proliferation is provided to enhance local search. Using the clonal proliferation operation, IDCMA reproduces individuals and selects their improved maturated progenies after local search, so single individuals can exploit their surrounding space effectively and the newcomers yield a broader exploration of the search space. The performance comparison of IDCMA with MISA, NSGA-Ⅱ, SPEA, PAES, NSGA, VEGA, NPGA, and HLGA in solving six well-known multiobjective function optimization problems and nine multiobjective 0/1 knapsack problems shows that IDCMA has a good performance in converging to approximate Pareto-optimal fronts with a good distribution.展开更多
This paper briefly reviews other people’s works on negative selection algorithm and their shortcomings. With a view to the real problem to be solved, authors bring forward two assumptions, based on which a new immune...This paper briefly reviews other people’s works on negative selection algorithm and their shortcomings. With a view to the real problem to be solved, authors bring forward two assumptions, based on which a new immune algorithm, multi-level negative selection algorithm, is developed. In essence, compared with Forrest’s negative selection algorithm, it enhances detector generation efficiency. This algorithm integrates clonal selection process into negative selection process for the first time. After careful analyses, this algorithm was applied to network intrusion detection and achieved good results.展开更多
Inspired by biological immune system, a new dynamic detection model for computer virus based on immune system is proposed. The quantitative description of the model is given. The problem of dynamic description for sel...Inspired by biological immune system, a new dynamic detection model for computer virus based on immune system is proposed. The quantitative description of the model is given. The problem of dynamic description for self and nonself in a computer virus immune system is solved, which reduces the size of self set. The new concept of dynamic tolerance, as well as the new mechanisms of gene evolution and gene coding for immature detectors is presented, improving the generating efficiency of mature detectors, reducing the false-negative and false-positive rates. Therefore, the difficult problem, in which the detector training cost is exponentially related to the size of self-set in a traditional computer immune system, is thus overcome. The theory analysis and experimental results show that the proposed model has better time efficiency and detecting ability than the classic model ARTIS.展开更多
This paper puts forward a novel artificial immune response algorithm for optimal approximation of linear systems. A quaternion model of artificial immune response is proposed for engineering computing. The model abstr...This paper puts forward a novel artificial immune response algorithm for optimal approximation of linear systems. A quaternion model of artificial immune response is proposed for engineering computing. The model abstracts four elements, namely, antigen, antibody, reaction rules among antibodies, and driving algorithm describing how the rules are applied to antibodies, to simulate the process of immune response. Some reaction rules including clonal selection rules, immunological memory rules and immune regulation rules are introduced. Using the theorem of Markov chain, it is proofed that the new model is convergent. The experimental study on the optimal approximation of a stable linear system and an unstable one show that the approximate models searched by the new model have better performance indices than those obtained by some existing algorithms including the differential evolution algorithm and the multi-agent genetic algorithm.展开更多
Based on the clonal selection theory and immune memory mechanism in the natural immune system, a novel artificial immune system algorithm, Clonal Strategy Algorithm based on the Immune Memory (CSAIM), is proposed in...Based on the clonal selection theory and immune memory mechanism in the natural immune system, a novel artificial immune system algorithm, Clonal Strategy Algorithm based on the Immune Memory (CSAIM), is proposed in this paper. The algorithm realizes the evolution of antibody population and the evolution of memory unit at the same time, and by using clonal selection operator, the global optimal computation can be combined with the local searching. According to antibody-antibody (Ab-Ab) affinity and antibody-antigen (Ab-Ag) affinity, the algorithm can allot adaptively the scales of memory unit and antibody population. It is proved theoretically that CSAIM is convergent with probability 1. And with the computer simulations of eight benchmark functions and one instance of traveling salesman problem (TSP), it is shown that CSAIM has strong abilities in having high convergence speed, enhancing the diversity of the population and avoiding the premature convergence to some extent.展开更多
Artificial immune systems (AIS) are a kind of new computational intelligence methods which draw inspiration from the human immune system. In this study, we introduce an AIS-based optimization algorithm, called clona...Artificial immune systems (AIS) are a kind of new computational intelligence methods which draw inspiration from the human immune system. In this study, we introduce an AIS-based optimization algorithm, called clonal selection algorithm, to solve the multi-user detection problem in code-division multipleaccess communications system based on the maximum-likelihood decision rule. Through proportional cloning, hypermutation, clonal selection and clonal death, the new method performs a greedy search which reproduces individuals and selects their improved maturated progenies after the affinity maturation process. Theoretical analysis indicates that the clonal selection algorithm is suitable for solving the multi-user detection problem. Computer simulations show that the proposed approach outperforms some other approaches including two genetic algorithm-based detectors and the matched filters detector, and has the ability to find the most likely combinations.展开更多
文摘The feasibility of a parameter identification method based on symbolic time series analysis (STSA) and the adaptive immune clonal selection algorithm (AICSA) is studied. Data symbolization by using STSA alleviates the effects of harmful noise in raw acceleration data. The effect of the parameters in STSA is theoretically evaluated and numerically verified. AICSA is employed to minimize the error between the state sequence histogram (SSH) that is transformed from raw acceleration data by STSA. The proposed methodology is evaluated by comparing it with AICSA using raw acceleration data. AICSA combining STSA is proved to be a powerful tool for identifying unknown parameters of structural systems even when the data is contaminated with relatively large amounts of noise.
基金Supported by the Basic Scientific Research Projects of the Central University of China(ZXH2010D010)the National Natural Science Foundation of China(60979021/F01)~~
文摘In order to ease congestion and ground delays in major hub airports, an aircraft taxiing scheduling optimization model is proposed with schedule time as the object function. In the new model, the idea of a classical job shop-schedule problem is adopted and three types of special aircraft-taxi conflicts are considered in the constraints. To solve such nondeterministic polynomial time-complex problems, the immune clonal selection algorithm(ICSA) is introduced. The simulation results in a congested hour of Beijing Capital International Airport show that, compared with the first-come-first-served(FCFS) strategy, the optimization-planning strategy reduces the total scheduling time by 13.6 min and the taxiing time per aircraft by 45.3 s, which improves the capacity of the runway and the efficiency of airport operations.
基金supported by National Natural Science Foundationof China (No. 60802061)Natural Science Research Item of the Education Department of Henan Province (No. 2008B510001)Innovation Scientists and Technicians Troop Construction Projects of Henan Province (No. 084100510012)
文摘A directional filter algorithm for intensity synthetic aperture radar (SAR) image based on nonsubsampled contourlet transform (NSCT) and immune clonal selection (ICS) is presented. The proposed filter mainly focuses on exploiting different features of edges and noises by NSCT. Furthermore, ICS strategy is introduced to optimize threshold parameter and amplify parameter adaptively. Numerical experiments on real SAR images show that there are improvements in both visual effects and objective indexes.
基金Project(51305467)supported by the National Natural Science Foundation of ChinaProject(12JJ4050)supported by the Natural Science Foundation of Hunan Province,China
文摘In order to control the locomotive wheel(axle) load distribution, a shimming process to adjust the locomotive secondary spring loads was heretofore developed. An immune dominance clonal selection multi-objective algorithm based on the artificial immune system was presented to further improve the performance of the optimization algorithm for locomotive secondary spring load adjustment, especially to solve the lack of control on the output shim quantity. The algorithm was designed into a two-level optimization structure according to the preferences of the problem, and the priori knowledge of the problem was used as the immune dominance. Experiments on various types of locomotives show that owing to the novel algorithm, the shim quantity is cut down by 30% 60% and the calculation time is about 90% less while the secondary spring load distribution is controlled on the same level as before. The application of this optimization algorithm can significantly improve the availability and efficiency of the secondary spring adjustment process.
文摘This hybrid methodology for structural health monitoring (SHM) is based on immune algorithms (IAs) and symbolic time series analysis (STSA). Real-valued negative selection (RNS) is used to detect damage detection and adaptive immune clonal selection algorithm (AICSA) is used to localize and quantify the damage. Data symbolization by using STSA alleviates the effects of harmful noise in raw acceleration data. This paper explains the mathematical basis of STSA and the procedure of the hybrid methodology. It also describes the results of an simulation experiment on a five-story shear frame structure that indicated the hybrid strategy can efficiently and precisely detect, localize and quantify damage to civil engineering structures in the presence of measurement noise.
文摘This work deals the application of the artificial immune system to discriminate between healthy and people with Parkinson’s disease (PWP). As the symptoms of Parkinson’s disease (PD) occur gradually and mostly targeting the elderly people for whom physical visits to the clinic are inconvenient and costly, telemonitoring of the disease using measurements of dysphonia (vocal features) has a vital role in its early diagnosis. Taking inspiration from natural immune systems, we try to grab useful properties such as automatic recognition, memorization and adaptation. The developed algorithms have as a base the algorithm of training bio inspired CLONCLAS. The results obtained are satisfactory and show a great reliability of the approach.
基金Supported by the National Natural Science Foundation of China (No. 61003198, 60703108, 60703109, 60702062,60803098)the National High Technology Development 863 Program of China (No. 2008AA01Z125, 2009AA12Z210)+1 种基金the China Postdoctoral Science Foundation funded project (No. 20090460093)the Provincial Natural Science Foundation of Shaanxi, China (No. 2009JQ8016)
文摘The performance of the classical clustering algorithm is not always satisfied with the high-dimensional datasets, which make clustering method limited in many application. To solve this problem, clustering method with Projection Pursuit dimension reduction based on Immune Clonal Selection Algorithm (ICSA-PP) is proposed in this paper. Projection pursuit strategy can maintain consistent Euclidean distances between points in the low-dimensional embeddings where the ICSA is used to search optimizing projection direction. The proposed algorithm can converge quickly with less iteration to reduce dimension of some high-dimensional datasets, and in which space, K-mean clustering algorithm is used to partition the reduced data. The experiment results on UCI data show that the presented method can search quicker to optimize projection direction than Genetic Algorithm (GA) and it has better clustering results compared with traditional linear dimension reduction method for Principle Component Analysis (PCA).
文摘It is necessary for mine countermeasure systems to recognise the model of a water mine before destroying because the destroying measures to be taken must be determined according to mine model. In this paper, an immune neural network (INN) along with water mine model recognition system based on multi-agent system is proposed. A modified clonal selection algorithm for constructing such an INN is presented based on clonal selection principle. The INN is a two-layer Boolean network whose number of outputs is adaptable according to the task and the affinity threshold. Adjusting the affinity threshold can easily control different recognition precision, and the affinity threshold also can control the capability of noise tolerance.
基金the National Natural Science Foundation of China(Grant Nos.60703107 and 60703108)the National High Technology Research and Development Program(863 Program) of China(Grant No.2006AA01Z107)+1 种基金the National Basic Research Program(973 Program) of China(Grant No.2006CB705700)the Program for Cheung Kong Scholars and Innovative Research Team in University(Grant No.IRT0645)
文摘Based on the mechanisms of immunodominance and clonal selection theory, we propose a new multiobjective optimization algorithm, immune dominance clonal multiobjective algorithm (IDCMA). IDCMA is unique in that its fitness values of current dominated individuals are assigned as the values of a custom distance measure, termed as Ab-Ab affinity, between the dominated individuals and one of the nondominated individuals found so far. According to the values of Ab-Ab affinity, all dominated individuals (antibodies) are divided into two kinds, subdominant antibodies and cryptic antibodies. Moreover, local search only applies to the subdominant antibodies, while the cryptic antibodies are redundant and have no function during local search, but they can become subdominant (active) antibodies during the subsequent evolution. Furthermore, a new immune operation, clonal proliferation is provided to enhance local search. Using the clonal proliferation operation, IDCMA reproduces individuals and selects their improved maturated progenies after local search, so single individuals can exploit their surrounding space effectively and the newcomers yield a broader exploration of the search space. The performance comparison of IDCMA with MISA, NSGA-Ⅱ, SPEA, PAES, NSGA, VEGA, NPGA, and HLGA in solving six well-known multiobjective function optimization problems and nine multiobjective 0/1 knapsack problems shows that IDCMA has a good performance in converging to approximate Pareto-optimal fronts with a good distribution.
基金Project (No. 60073034) supported by the National Natural Sci-ence Foundation of China
文摘This paper briefly reviews other people’s works on negative selection algorithm and their shortcomings. With a view to the real problem to be solved, authors bring forward two assumptions, based on which a new immune algorithm, multi-level negative selection algorithm, is developed. In essence, compared with Forrest’s negative selection algorithm, it enhances detector generation efficiency. This algorithm integrates clonal selection process into negative selection process for the first time. After careful analyses, this algorithm was applied to network intrusion detection and achieved good results.
基金the National Natural Science Foundation of China (Grant No.60573130)the 863 Project of China (Grant No.2006AA01Z435)
文摘Inspired by biological immune system, a new dynamic detection model for computer virus based on immune system is proposed. The quantitative description of the model is given. The problem of dynamic description for self and nonself in a computer virus immune system is solved, which reduces the size of self set. The new concept of dynamic tolerance, as well as the new mechanisms of gene evolution and gene coding for immature detectors is presented, improving the generating efficiency of mature detectors, reducing the false-negative and false-positive rates. Therefore, the difficult problem, in which the detector training cost is exponentially related to the size of self-set in a traditional computer immune system, is thus overcome. The theory analysis and experimental results show that the proposed model has better time efficiency and detecting ability than the classic model ARTIS.
基金supported by the National Natural Science Foundation of China(Grant Nos,60133010 and 60372045)the Graduate Innovation Fund of Xidian University(Grant No.05004),
文摘This paper puts forward a novel artificial immune response algorithm for optimal approximation of linear systems. A quaternion model of artificial immune response is proposed for engineering computing. The model abstracts four elements, namely, antigen, antibody, reaction rules among antibodies, and driving algorithm describing how the rules are applied to antibodies, to simulate the process of immune response. Some reaction rules including clonal selection rules, immunological memory rules and immune regulation rules are introduced. Using the theorem of Markov chain, it is proofed that the new model is convergent. The experimental study on the optimal approximation of a stable linear system and an unstable one show that the approximate models searched by the new model have better performance indices than those obtained by some existing algorithms including the differential evolution algorithm and the multi-agent genetic algorithm.
文摘Based on the clonal selection theory and immune memory mechanism in the natural immune system, a novel artificial immune system algorithm, Clonal Strategy Algorithm based on the Immune Memory (CSAIM), is proposed in this paper. The algorithm realizes the evolution of antibody population and the evolution of memory unit at the same time, and by using clonal selection operator, the global optimal computation can be combined with the local searching. According to antibody-antibody (Ab-Ab) affinity and antibody-antigen (Ab-Ag) affinity, the algorithm can allot adaptively the scales of memory unit and antibody population. It is proved theoretically that CSAIM is convergent with probability 1. And with the computer simulations of eight benchmark functions and one instance of traveling salesman problem (TSP), it is shown that CSAIM has strong abilities in having high convergence speed, enhancing the diversity of the population and avoiding the premature convergence to some extent.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60703107, 60703108)the National High-Tech Research & Develop-ment Program of China (Grant No. 2009AA12Z210)+1 种基金the Program for New Century Excellent Talents in University (Grant No. NCET-08-0811)the Program for Cheung Kong Scholars and Innovative Research Team in University (Grant No. IRT-06-45)
文摘Artificial immune systems (AIS) are a kind of new computational intelligence methods which draw inspiration from the human immune system. In this study, we introduce an AIS-based optimization algorithm, called clonal selection algorithm, to solve the multi-user detection problem in code-division multipleaccess communications system based on the maximum-likelihood decision rule. Through proportional cloning, hypermutation, clonal selection and clonal death, the new method performs a greedy search which reproduces individuals and selects their improved maturated progenies after the affinity maturation process. Theoretical analysis indicates that the clonal selection algorithm is suitable for solving the multi-user detection problem. Computer simulations show that the proposed approach outperforms some other approaches including two genetic algorithm-based detectors and the matched filters detector, and has the ability to find the most likely combinations.