A bionic gannet was developed based on the analysis of the body configuration and skeleton structure and the motion pattern of wings of a gannet in plunge-diving. In the current prototype, adjustable sweptback wings w...A bionic gannet was developed based on the analysis of the body configuration and skeleton structure and the motion pattern of wings of a gannet in plunge-diving. In the current prototype, adjustable sweptback wings were implemented so as to achieve different body shapes for entering water. The impact acceleration in the longitudinal body axis direction and the axial overload on the body were investigated through the falling-down experiments under different conditions including dropping height, water-entry inclination angle, and wing sweptback angle. It is found that when the above three key parameters are 10 m for dropping height, 0° for wing sweptback angle, and 90° for water-entry inclination angle, the maximum peak impact acceleration and overload are -167.20 m.s-2 and 18.06 respectively. Furthermore, the variation of peak impact acceleration with the three key parameters were also analyzed and discussed.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant no. 51005008).
文摘A bionic gannet was developed based on the analysis of the body configuration and skeleton structure and the motion pattern of wings of a gannet in plunge-diving. In the current prototype, adjustable sweptback wings were implemented so as to achieve different body shapes for entering water. The impact acceleration in the longitudinal body axis direction and the axial overload on the body were investigated through the falling-down experiments under different conditions including dropping height, water-entry inclination angle, and wing sweptback angle. It is found that when the above three key parameters are 10 m for dropping height, 0° for wing sweptback angle, and 90° for water-entry inclination angle, the maximum peak impact acceleration and overload are -167.20 m.s-2 and 18.06 respectively. Furthermore, the variation of peak impact acceleration with the three key parameters were also analyzed and discussed.