Ethylene-propylene block copolymer(EbP) is a vital component in impact polypropylene copolymer(IPC), yet its distribution in the multiphase composite material and how it influences the phase structure and the mechanic...Ethylene-propylene block copolymer(EbP) is a vital component in impact polypropylene copolymer(IPC), yet its distribution in the multiphase composite material and how it influences the phase structure and the mechanical properties are not well understood. In this work,four IPCs were investigated by atomic force microscopy-infrared(AFM-IR) to assess the phase compositions in situ, based on which in conjunction with the chain microstructure information obtained ex situ the distributions of the copolymer components were derived for each alloy. For the IPCs whose EbP comprises long P and long E segments, the EbP fraction was found to phase separate from the rubber and the PP matrix to form the cores of the disperse particles with the E-P segmented copolymer(EsP). In contrast, in the IPC with EbP composed of long P and short E segments, the EbP fraction formed an outer shell for the rubber particles with the cores comprising the EsP alone, and this IPC, containing a lower E comonomer content than its counterpart, exhibited both better impact resistance and higher flexural modulus. These results clarify how the chain structure of EbP governs the phase morphology in IPC, which in turn impacts the properties of the composite material.展开更多
基金financially supported by the National Natural Science Foundation of China (No.52073277)the Science and Technology Department of Fujian Province (No.2020HZ06019)。
文摘Ethylene-propylene block copolymer(EbP) is a vital component in impact polypropylene copolymer(IPC), yet its distribution in the multiphase composite material and how it influences the phase structure and the mechanical properties are not well understood. In this work,four IPCs were investigated by atomic force microscopy-infrared(AFM-IR) to assess the phase compositions in situ, based on which in conjunction with the chain microstructure information obtained ex situ the distributions of the copolymer components were derived for each alloy. For the IPCs whose EbP comprises long P and long E segments, the EbP fraction was found to phase separate from the rubber and the PP matrix to form the cores of the disperse particles with the E-P segmented copolymer(EsP). In contrast, in the IPC with EbP composed of long P and short E segments, the EbP fraction formed an outer shell for the rubber particles with the cores comprising the EsP alone, and this IPC, containing a lower E comonomer content than its counterpart, exhibited both better impact resistance and higher flexural modulus. These results clarify how the chain structure of EbP governs the phase morphology in IPC, which in turn impacts the properties of the composite material.