Large constellations have developed rapidly in recent years because of their unique advantages, but they will inevitably have a major negative impact on the space debris environment, leading to its deterioration. The ...Large constellations have developed rapidly in recent years because of their unique advantages, but they will inevitably have a major negative impact on the space debris environment, leading to its deterioration. The key to mitigate the impact is the success rate and duration of the post-mission disposal(PMD) process. Aiming at solving this problem, this paper further studies the impact of large constellations on other space assets under different PMD strategies through simulation, and proposes corresponding strategies and suggestions for mitigation.According to One Web’s large constellation launch plan, the dangerous intersection of the large constellation with existing space assets at different stages of the constellations life cycle is calculated by simulation. Based on this, the influence of the large constellation operation on existing space assets at different times and strategies of PMD is analyzed. The conclusion shows that in the PMD stage, large constellations have the greatest impact on existing space assets;the PMD duration and number of satellites performing PMD at the same time are key factors to the degree of negative impact. The faster the PMD is, the less threat it poses to other spacecraft. More results and conclusions are still being analyzed.展开更多
The ocean’s thermal inertia is a major contributor to irreversible ocean changes exceeding time scales that matter to human society.This fact is a challenge to societies as they prepare for the consequences of climat...The ocean’s thermal inertia is a major contributor to irreversible ocean changes exceeding time scales that matter to human society.This fact is a challenge to societies as they prepare for the consequences of climate change,especially with respect to the ocean.Here the authors review the requirements for human actions from the ocean’s perspective.In the near term(∼2030),goals such as the United Nations Sustainable Development Goals(SDGs)will be critical.Over longer times(∼2050–2060 and beyond),global carbon neutrality targets may be met as countries continue to work toward reducing emissions.Both adaptation and mitigation plans need to be fully implemented in the interim,and the Global Ocean Observation System should be sustained so that changes can be continuously monitored.In the longer-term(after∼2060),slow emerging changes such as deep ocean warming and sea level rise are committed to continue even in the scenario where net zero emissions are reached.Thus,climate actions have to extend to time scales of hundreds of years.At these time scales,preparation for“high impact,low probability”risks—such as an abrupt showdown of Atlantic Meridional Overturning Circulation,ecosystem change,or irreversible ice sheet loss—should be fully integrated into long-term planning.展开更多
We investigate the impact of network topology on blocking probability in wavelength-routed networks using a dynamic traffic growth model. The dependence of blocking on different physical parameters is assessed.
文摘Large constellations have developed rapidly in recent years because of their unique advantages, but they will inevitably have a major negative impact on the space debris environment, leading to its deterioration. The key to mitigate the impact is the success rate and duration of the post-mission disposal(PMD) process. Aiming at solving this problem, this paper further studies the impact of large constellations on other space assets under different PMD strategies through simulation, and proposes corresponding strategies and suggestions for mitigation.According to One Web’s large constellation launch plan, the dangerous intersection of the large constellation with existing space assets at different stages of the constellations life cycle is calculated by simulation. Based on this, the influence of the large constellation operation on existing space assets at different times and strategies of PMD is analyzed. The conclusion shows that in the PMD stage, large constellations have the greatest impact on existing space assets;the PMD duration and number of satellites performing PMD at the same time are key factors to the degree of negative impact. The faster the PMD is, the less threat it poses to other spacecraft. More results and conclusions are still being analyzed.
基金L.Cheng acknowledges financial supports from the Strategic Priority Research Program of the Chinese Academy of Sciences[grant munber XDB42040402]the National Natural Science Foundation of China[grant numbers 42122046 and 42076202]The National Center for Atmospheric Research is sponsored by the National Science Foundation.
文摘The ocean’s thermal inertia is a major contributor to irreversible ocean changes exceeding time scales that matter to human society.This fact is a challenge to societies as they prepare for the consequences of climate change,especially with respect to the ocean.Here the authors review the requirements for human actions from the ocean’s perspective.In the near term(∼2030),goals such as the United Nations Sustainable Development Goals(SDGs)will be critical.Over longer times(∼2050–2060 and beyond),global carbon neutrality targets may be met as countries continue to work toward reducing emissions.Both adaptation and mitigation plans need to be fully implemented in the interim,and the Global Ocean Observation System should be sustained so that changes can be continuously monitored.In the longer-term(after∼2060),slow emerging changes such as deep ocean warming and sea level rise are committed to continue even in the scenario where net zero emissions are reached.Thus,climate actions have to extend to time scales of hundreds of years.At these time scales,preparation for“high impact,low probability”risks—such as an abrupt showdown of Atlantic Meridional Overturning Circulation,ecosystem change,or irreversible ice sheet loss—should be fully integrated into long-term planning.
文摘We investigate the impact of network topology on blocking probability in wavelength-routed networks using a dynamic traffic growth model. The dependence of blocking on different physical parameters is assessed.