A pneumatic actuator is a fast and economical tool that converts compressed air into mechanical motion.In this paper,an extended state observer(ESO)-based sliding mode controller(SMC)is developed to adjust the air pre...A pneumatic actuator is a fast and economical tool that converts compressed air into mechanical motion.In this paper,an extended state observer(ESO)-based sliding mode controller(SMC)is developed to adjust the air pressure of the actua-tor for accurate position control,Specifically,an impedance control module is established to produce desired air pressure based on the relationship between forces and desired positions.Then,the ESO-based SMC is implemented to adjust the air pressure to the required level despite the presence of system uncertainties and disturbances.As a result,the position of the actuator is controlled to a setpoint through the regulation of pressure.The performance of ESO-based SMC is compared with that of a classic active disturbance rciection controller(ADRC)and a SMC.Simulation results demonstrate that the:ESO-based SMC shows comparable performance to ADRC in terms of precise pressure control.In addition,it requires the least control effort ncessary to excite valves among the three controllers.The stability of ESO based SMC is theoretically justifed through Lyapunov approach.展开更多
文摘A pneumatic actuator is a fast and economical tool that converts compressed air into mechanical motion.In this paper,an extended state observer(ESO)-based sliding mode controller(SMC)is developed to adjust the air pressure of the actua-tor for accurate position control,Specifically,an impedance control module is established to produce desired air pressure based on the relationship between forces and desired positions.Then,the ESO-based SMC is implemented to adjust the air pressure to the required level despite the presence of system uncertainties and disturbances.As a result,the position of the actuator is controlled to a setpoint through the regulation of pressure.The performance of ESO-based SMC is compared with that of a classic active disturbance rciection controller(ADRC)and a SMC.Simulation results demonstrate that the:ESO-based SMC shows comparable performance to ADRC in terms of precise pressure control.In addition,it requires the least control effort ncessary to excite valves among the three controllers.The stability of ESO based SMC is theoretically justifed through Lyapunov approach.