Lock-in amplifiers are used to detect and measure very small alternating current(AC)signals down to the range of nVs.Accurate measurements can be made even when the small signals are buried by noise thousands of times...Lock-in amplifiers are used to detect and measure very small alternating current(AC)signals down to the range of nVs.Accurate measurements can be made even when the small signals are buried by noise thousands of times larger.With the digital signal processing(DSP)technology involved in modern instrumentation,a lock-in amplifier is more versatile in sensing and recovering small signals.Combining the virtual instrumentation technology,we reorganize the functional blocks of a programmable lock-in amplifier and build it as a virtual spectrum analyzer,virtual impedance meter,virtual network analyzer,virtual semiconductor parameter analyzer,signal generator,etc.A 4 layer model is used to implement these virtual instruments.The same virtual instrument can also be implemented on a general purpose FPGA developing board.展开更多
To increase the detectability of split Hopkinson pressure bar (SHPB) of low-impedance materials, modifications were conducted on traditional SHPB apparatus with a PMMA tube to output transmitted signal, and weak sig...To increase the detectability of split Hopkinson pressure bar (SHPB) of low-impedance materials, modifications were conducted on traditional SHPB apparatus with a PMMA tube to output transmitted signal, and weak signals were further amplified by semiconductor strain gauges. Experiments on soft rubbers and cushioning foam materials were carried out. In order to analyze the accuracy of the experimental results, the stress equilibrium issues involved in the assumptions of SHPB were investigated. First, by way of re-constructing loading process of incident wave, the stress- strain curve was obtained, along with the stress equilibrium ratio of specimen. Secondly, the influences on the accuracy of stress-strain curves were investigated through the elastic modulus comparisons. And the results illustrate that the bilinear incident wave from experiments can ensure the stress equilibrium deformation of specimen after 2 normalized times, much sooner than ramp incident waves. Moreover, it even facilitates specimen deformation with a constant strain rate. The results confirm that the detectability of the modified SHPB can be down to tens kPa with enough accuracy level.展开更多
AC impedance is a new method to study the changes of pore structure and the hydration degree during the hydration and hardening process of cement paste by the change of the electrochemical parameters. Employing AC imp...AC impedance is a new method to study the changes of pore structure and the hydration degree during the hydration and hardening process of cement paste by the change of the electrochemical parameters. Employing AC impedance method, we studied the hydration and hardening process of cement paste with fly ash and slag, and analyzed the influence of different hydration age, water-binder ratio and mineral admixture on the impedance parameters. Moreover, we compared the results with those by the conventional porosity testing method and X-ray diffraction method. The results showed that AC impedance could be taken as a new technology in cement and concrete research.展开更多
By using such flier-plate material,quasi-isentropic compression can be realized.Based on it,hypervelocity launching is further accomplished.As a result,an extremely high dynamic pressure can be obtained in laboratory,...By using such flier-plate material,quasi-isentropic compression can be realized.Based on it,hypervelocity launching is further accomplished.As a result,an extremely high dynamic pressure can be obtained in laboratory,offering a practical method for the comprehensive determination of materials behavior,response,equation-of-state and properties in dynamic loading process.展开更多
The tentative variation of the mechanical impedance, of a cylindrical sample of cerebral material, has been achieved by Vibrometer Laser according to the frequency. The studied matter is supposed homogeneous, isotropi...The tentative variation of the mechanical impedance, of a cylindrical sample of cerebral material, has been achieved by Vibrometer Laser according to the frequency. The studied matter is supposed homogeneous, isotropic and stationary. A multilayered mechanical model has been associated to the studied sample to simulate its vibration. The theoretical expression of mechanical impedance has been determined while taking the mechanical/electric analogy as a basis. A good adjustment of theoretical model parameters permitted us to have a good agreement theory/experience of the mechanical impedance variation according to the sample vibration frequency.展开更多
The LiMn2O4 thin film as a cathode material was prepared through solution deposition followed by rapid thermal annealing (RTA). The phase identification and the study of surface morphology were carried out by X-my d...The LiMn2O4 thin film as a cathode material was prepared through solution deposition followed by rapid thermal annealing (RTA). The phase identification and the study of surface morphology were carried out by X-my diffraction and scanning electron microscopy. Electrochemical properties were examined by cyclic voltammetry, galvanostatic charge-discharge experiments, and electrochemical impedance spectroscopy. The results show that the film prepared by this method is homogeneous, dense, and crack-free. The thin film has a capacity of 38 μtAh/(cm^2·μm) with the capacity loss of 0.037% per cycle after being cycled for 100 times. The average diffusion coefficient for lithium ions in the RTA-derived LiMn2O4 thin film is 1×10 ^-10 cm^2·s^-1.展开更多
Development of inexpensive non Pt based high electrocatalytic energy materials is the need of the hour for fuel cell electrode to produce clean alternative green energy from synthesized bio alcohol using biomass. MnO ...Development of inexpensive non Pt based high electrocatalytic energy materials is the need of the hour for fuel cell electrode to produce clean alternative green energy from synthesized bio alcohol using biomass. MnO 2,electro synthesized at different current density is found to be well performed electrocatalytic material,comparable to Pt,with higher current density,very lowovervoltage for the electrochemical oxidation of methanol. From EIS study,the polarization resistance of the coated MnO 2is found to be much lowand electrical double layer capacitance is high,the effect increases with increase in current density of electro deposition. XRD,EDX and AAS analysis confirm the M nO 2deposition. The morphology of SEM images exhibits an enhanced 3D effective substrate area,for electro oxidation of the fuel. A fewnano structured grains of the deposited M nO 2is also observed at higher current density. The fact supports that a high energetic inexpensive electro catalytic material has been found for fuel cell electrode to synthesis renewable energy from methanol fuel.展开更多
Nanocrystalline powder of LaF3 was synthesized by a method of direct precipitation from water solution. Particle size and shape of LaF3 nanocrystalline powder was analysed with TEM. Particles were mainly spherical wit...Nanocrystalline powder of LaF3 was synthesized by a method of direct precipitation from water solution. Particle size and shape of LaF3 nanocrystalline powder was analysed with TEM. Particles were mainly spherical with narrow particle size distribution (10 20 nm). The average particle size analysed with XRD is 16.7 nm. Nano-LaF3 bulk material was prepared by compacting the powder to 1 GPa at room temperature and a vacuum of 10^-4 Pa. The ionic conductivity of nano-LaF3 bulk material was studied with complex impedance spectra at room temperature. The ionic conductivity of nano-LaF3 bulk material (1 × 10^-5 S·cm^-1 ) at room temperature is significantly increased compared to that of single crystal LaF3 (1 × 10^-6 S·cm^-1). A special phenomenon was observed firstly time that the ionic conductivity increased gradually with multiple testing in result of relaxation.展开更多
The ultrafine CexMg0.06Zr1-xO1.94 ( x = 0 16% ) powders were synthesized by a chemical co-precipitated method. The pressed compacts were sintered in air at 1300, 1400, 1500, 1600℃ for 3 h, respectively. The phase o...The ultrafine CexMg0.06Zr1-xO1.94 ( x = 0 16% ) powders were synthesized by a chemical co-precipitated method. The pressed compacts were sintered in air at 1300, 1400, 1500, 1600℃ for 3 h, respectively. The phase of the ceramics was characterized by the X-ray diffraction (XRD) method. The conductivity of the ceramics was measured by the AC complex impedance technique at 700- 1200 ℃. The ratio of the cubic phase in the ceramics improves with increasing CeO2 content, leading to a enlargement of the oxygen ionic migration channel. The contact resistance between conductive phase particles decreases with increasing CeO2 content, leading to a lower migration hindrance of the oxygen ionic. Consequently, the ionic conductivity of the ceramics improves with increas- ing CeO2 content. Additionally, an analysis for this phenomenon was also presented.展开更多
The ionic conductivity (at room temperature) of nano-LaF3 bulk material and a new discovered phenomenon of increasing ionic conductivity caused by grain boundary relaxation activated by AC (alternating current) shocki...The ionic conductivity (at room temperature) of nano-LaF3 bulk material and a new discovered phenomenon of increasing ionic conductivity caused by grain boundary relaxation activated by AC (alternating current) shocking were reported. Nano-crystalline powder of LaF3 with average grain size of 16.7 nm was synthesized with a method of direct precipitation from aqueous solution. Particle size and shape of LaF3 nano-crystalline powder were analyzed by XRD and TEM. Nano-LaF3 bulk material was prepared by compacting the powder to 1 GPa at room temperature and vacuum of 10?4 Pa. The ionic conductivity of nano-LaF3 bulk material was studied with complex impedance spectra at room temperature. The ionic conductivity of nano-LaF3 bulk material (10?5 S/cm) at room temperature is significantly increased compared with that of single crystal LaF3 (10?6 S/cm). A special phenomenon is observed for the first time that the ionic conductivity increases gradually with AC scanning times.展开更多
In order to improve the giant magneto impedance (GMI) of Co-rich wires for high sensitive sensor applications, Co6sFe4.sSilsBlz5 wires were prepared by melt an extraction technique and subjected to Joule stress-curr...In order to improve the giant magneto impedance (GMI) of Co-rich wires for high sensitive sensor applications, Co6sFe4.sSilsBlz5 wires were prepared by melt an extraction technique and subjected to Joule stress-current anneal treatments with different tensile slresses applied. And then their GMI response was investigated at a frequency range from 0.1 to 13 MHz. It was found through the comparison of results that the GMI effect of these wires had been improved through stress-current anneal treatments, because the tensile stress applied on these Co-rich wires introduced magnetoelastic energy and increased anisotropy, which improved the circular permeability and GMI effect. Their impedance ratio AZ/Z increased from 244% to 480.9% at 7 MHz and the field sensitivity increased to 0.83%/(A/m) at 5 MHz, when a tensile stress of 244 MPa was applied at an anneal current of 100 mA for 10 min. It was therefore concluded that these annealed wires were suitable for high sensitive sensor applications.展开更多
Silicone rubber(SR) composites are most widely used as thermal interface materials(TIMs) for electronics heat dissipation. Thermal impedance as the main bottleneck limiting the performance of TIMs is usually neglected...Silicone rubber(SR) composites are most widely used as thermal interface materials(TIMs) for electronics heat dissipation. Thermal impedance as the main bottleneck limiting the performance of TIMs is usually neglected. Herein, the thermal impedance of SR composites loaded with different levels of hexagonal boron nitride(h-BN) as TIMs was elaborated for the first time by the ASTM D 5470 standard test and finite element analysis. It was found that elastic modulus and surface roughness of SR composites increased with the increase of h-BN content, indicating that the conformity was reduced. When the assembly pressure was 0.69 MPa, there existed an optimal h-BN content at which the contact resistance was minimum(0.39 K·cm^(2)·W^(-1)). Although the decreased bond line thickness(BLT) by increasing the assembly pressure was beneficial to reduce the thermal impedance, the proper assembly pressure should be selected to prevent the warpage of the contact surfaces and the increase in contact resistance, according to the compression properties of the SR composites. This study provides valuable insights into fabrication of high-performance TIMs for modern electronic device applications.展开更多
文摘Lock-in amplifiers are used to detect and measure very small alternating current(AC)signals down to the range of nVs.Accurate measurements can be made even when the small signals are buried by noise thousands of times larger.With the digital signal processing(DSP)technology involved in modern instrumentation,a lock-in amplifier is more versatile in sensing and recovering small signals.Combining the virtual instrumentation technology,we reorganize the functional blocks of a programmable lock-in amplifier and build it as a virtual spectrum analyzer,virtual impedance meter,virtual network analyzer,virtual semiconductor parameter analyzer,signal generator,etc.A 4 layer model is used to implement these virtual instruments.The same virtual instrument can also be implemented on a general purpose FPGA developing board.
基金Supported by the National Natural Science Foundation(11272267,11102168,10932008)111 Project(B07050)
文摘To increase the detectability of split Hopkinson pressure bar (SHPB) of low-impedance materials, modifications were conducted on traditional SHPB apparatus with a PMMA tube to output transmitted signal, and weak signals were further amplified by semiconductor strain gauges. Experiments on soft rubbers and cushioning foam materials were carried out. In order to analyze the accuracy of the experimental results, the stress equilibrium issues involved in the assumptions of SHPB were investigated. First, by way of re-constructing loading process of incident wave, the stress- strain curve was obtained, along with the stress equilibrium ratio of specimen. Secondly, the influences on the accuracy of stress-strain curves were investigated through the elastic modulus comparisons. And the results illustrate that the bilinear incident wave from experiments can ensure the stress equilibrium deformation of specimen after 2 normalized times, much sooner than ramp incident waves. Moreover, it even facilitates specimen deformation with a constant strain rate. The results confirm that the detectability of the modified SHPB can be down to tens kPa with enough accuracy level.
基金Funded the Major Sate Basic Research Development Program of China(973 Program)(No.2009CB23201)Beijing Natural Science Foundation(No.8100001)National Natural Science Foundation of China(No.51278014)
文摘AC impedance is a new method to study the changes of pore structure and the hydration degree during the hydration and hardening process of cement paste by the change of the electrochemical parameters. Employing AC impedance method, we studied the hydration and hardening process of cement paste with fly ash and slag, and analyzed the influence of different hydration age, water-binder ratio and mineral admixture on the impedance parameters. Moreover, we compared the results with those by the conventional porosity testing method and X-ray diffraction method. The results showed that AC impedance could be taken as a new technology in cement and concrete research.
文摘By using such flier-plate material,quasi-isentropic compression can be realized.Based on it,hypervelocity launching is further accomplished.As a result,an extremely high dynamic pressure can be obtained in laboratory,offering a practical method for the comprehensive determination of materials behavior,response,equation-of-state and properties in dynamic loading process.
文摘The tentative variation of the mechanical impedance, of a cylindrical sample of cerebral material, has been achieved by Vibrometer Laser according to the frequency. The studied matter is supposed homogeneous, isotropic and stationary. A multilayered mechanical model has been associated to the studied sample to simulate its vibration. The theoretical expression of mechanical impedance has been determined while taking the mechanical/electric analogy as a basis. A good adjustment of theoretical model parameters permitted us to have a good agreement theory/experience of the mechanical impedance variation according to the sample vibration frequency.
基金This project was financially supported by the Natural Science Foundation of Hunan Province, China (No. 04JJ40038) and the Education Department of Hunan Province, China (No. 04C 475).
文摘The LiMn2O4 thin film as a cathode material was prepared through solution deposition followed by rapid thermal annealing (RTA). The phase identification and the study of surface morphology were carried out by X-my diffraction and scanning electron microscopy. Electrochemical properties were examined by cyclic voltammetry, galvanostatic charge-discharge experiments, and electrochemical impedance spectroscopy. The results show that the film prepared by this method is homogeneous, dense, and crack-free. The thin film has a capacity of 38 μtAh/(cm^2·μm) with the capacity loss of 0.037% per cycle after being cycled for 100 times. The average diffusion coefficient for lithium ions in the RTA-derived LiMn2O4 thin film is 1×10 ^-10 cm^2·s^-1.
文摘Development of inexpensive non Pt based high electrocatalytic energy materials is the need of the hour for fuel cell electrode to produce clean alternative green energy from synthesized bio alcohol using biomass. MnO 2,electro synthesized at different current density is found to be well performed electrocatalytic material,comparable to Pt,with higher current density,very lowovervoltage for the electrochemical oxidation of methanol. From EIS study,the polarization resistance of the coated MnO 2is found to be much lowand electrical double layer capacitance is high,the effect increases with increase in current density of electro deposition. XRD,EDX and AAS analysis confirm the M nO 2deposition. The morphology of SEM images exhibits an enhanced 3D effective substrate area,for electro oxidation of the fuel. A fewnano structured grains of the deposited M nO 2is also observed at higher current density. The fact supports that a high energetic inexpensive electro catalytic material has been found for fuel cell electrode to synthesis renewable energy from methanol fuel.
文摘Nanocrystalline powder of LaF3 was synthesized by a method of direct precipitation from water solution. Particle size and shape of LaF3 nanocrystalline powder was analysed with TEM. Particles were mainly spherical with narrow particle size distribution (10 20 nm). The average particle size analysed with XRD is 16.7 nm. Nano-LaF3 bulk material was prepared by compacting the powder to 1 GPa at room temperature and a vacuum of 10^-4 Pa. The ionic conductivity of nano-LaF3 bulk material was studied with complex impedance spectra at room temperature. The ionic conductivity of nano-LaF3 bulk material (1 × 10^-5 S·cm^-1 ) at room temperature is significantly increased compared to that of single crystal LaF3 (1 × 10^-6 S·cm^-1). A special phenomenon was observed firstly time that the ionic conductivity increased gradually with multiple testing in result of relaxation.
文摘The ultrafine CexMg0.06Zr1-xO1.94 ( x = 0 16% ) powders were synthesized by a chemical co-precipitated method. The pressed compacts were sintered in air at 1300, 1400, 1500, 1600℃ for 3 h, respectively. The phase of the ceramics was characterized by the X-ray diffraction (XRD) method. The conductivity of the ceramics was measured by the AC complex impedance technique at 700- 1200 ℃. The ratio of the cubic phase in the ceramics improves with increasing CeO2 content, leading to a enlargement of the oxygen ionic migration channel. The contact resistance between conductive phase particles decreases with increasing CeO2 content, leading to a lower migration hindrance of the oxygen ionic. Consequently, the ionic conductivity of the ceramics improves with increas- ing CeO2 content. Additionally, an analysis for this phenomenon was also presented.
基金Project(59872031) supported by the National Natural Science Foundation of China
文摘The ionic conductivity (at room temperature) of nano-LaF3 bulk material and a new discovered phenomenon of increasing ionic conductivity caused by grain boundary relaxation activated by AC (alternating current) shocking were reported. Nano-crystalline powder of LaF3 with average grain size of 16.7 nm was synthesized with a method of direct precipitation from aqueous solution. Particle size and shape of LaF3 nano-crystalline powder were analyzed by XRD and TEM. Nano-LaF3 bulk material was prepared by compacting the powder to 1 GPa at room temperature and vacuum of 10?4 Pa. The ionic conductivity of nano-LaF3 bulk material was studied with complex impedance spectra at room temperature. The ionic conductivity of nano-LaF3 bulk material (10?5 S/cm) at room temperature is significantly increased compared with that of single crystal LaF3 (10?6 S/cm). A special phenomenon is observed for the first time that the ionic conductivity increases gradually with AC scanning times.
文摘In order to improve the giant magneto impedance (GMI) of Co-rich wires for high sensitive sensor applications, Co6sFe4.sSilsBlz5 wires were prepared by melt an extraction technique and subjected to Joule stress-current anneal treatments with different tensile slresses applied. And then their GMI response was investigated at a frequency range from 0.1 to 13 MHz. It was found through the comparison of results that the GMI effect of these wires had been improved through stress-current anneal treatments, because the tensile stress applied on these Co-rich wires introduced magnetoelastic energy and increased anisotropy, which improved the circular permeability and GMI effect. Their impedance ratio AZ/Z increased from 244% to 480.9% at 7 MHz and the field sensitivity increased to 0.83%/(A/m) at 5 MHz, when a tensile stress of 244 MPa was applied at an anneal current of 100 mA for 10 min. It was therefore concluded that these annealed wires were suitable for high sensitive sensor applications.
基金financially supported by Sichuan Science and Technology Program (No.2022YFH0090)the Fundamental Research Funds for the Central Universities。
文摘Silicone rubber(SR) composites are most widely used as thermal interface materials(TIMs) for electronics heat dissipation. Thermal impedance as the main bottleneck limiting the performance of TIMs is usually neglected. Herein, the thermal impedance of SR composites loaded with different levels of hexagonal boron nitride(h-BN) as TIMs was elaborated for the first time by the ASTM D 5470 standard test and finite element analysis. It was found that elastic modulus and surface roughness of SR composites increased with the increase of h-BN content, indicating that the conformity was reduced. When the assembly pressure was 0.69 MPa, there existed an optimal h-BN content at which the contact resistance was minimum(0.39 K·cm^(2)·W^(-1)). Although the decreased bond line thickness(BLT) by increasing the assembly pressure was beneficial to reduce the thermal impedance, the proper assembly pressure should be selected to prevent the warpage of the contact surfaces and the increase in contact resistance, according to the compression properties of the SR composites. This study provides valuable insights into fabrication of high-performance TIMs for modern electronic device applications.