Long-term contraception subdermal implant made bylevonorgestrel and silastic tube have the adventure oflong-term use,high quality,good recovery afterremoving.It is a very popular contraceptive method.Forsafety of usin...Long-term contraception subdermal implant made bylevonorgestrel and silastic tube have the adventure oflong-term use,high quality,good recovery afterremoving.It is a very popular contraceptive method.Forsafety of using implant,the mutagenic effects of implantin Ames-test,Micronucleis-test and on Chinese HamsterOvary(CHO) Cell is reported.展开更多
Historically,the rapid degradation and massive gas release from magnesium(Mg)implants resulted in severe emphysema and mechanical failure.With the advent of new alloys and surface treatment methods,optimized Mg implan...Historically,the rapid degradation and massive gas release from magnesium(Mg)implants resulted in severe emphysema and mechanical failure.With the advent of new alloys and surface treatment methods,optimized Mg implants have re-entered clinics since last decade with reliable performance.However,the optimization aims at slowing down the degradation process,rather than exemption of the gas release.This study involved a systematic evaluation of current preclinical and clinical evidence,regarding the physical signs,symptoms,radiological features,pathological findings and complications potentially associated with peri±implant gas accumulation(PIGA)after musculoskeletal Mg implantation.The literature search identified 196 potentially relevant publications,and 51 papers were enrolled for further analysis,including 22 preclinical tests and 29 clinical studies published from 2005 to 2023.Various Mg-based materials have been evaluated in animal research,and the application of pure Mg and Mg alloys have been reported in clinical follow-ups involving multiple anatomical sites and musculoskeletal disorders.Soft tissue and intraosseous PIGA are common in both animal tests and clinical follow-ups,and potentially associated with certain adverse events.Radiological examinations especially micro-CT and clinical CT scans provide valuable information for quantitative and longitudinal analysis.While according to simulation tests involving Mg implantation and chemical processing,tissue fixation could lead to an increase in the volume of gas cavity,thus the results obtained from ex vivo imaging or histopathological evaluations should be interpreted with caution.There still lacks standardized procedures or consensus for both preclinical and clinical evaluation of PIGA.However,by providing focused insights into the topic,this evidence-based study will facilitate future animal tests and clinical evaluations,and support developing biocompatible Mg implants for the treatment of musculoskeletal disorders.展开更多
The clinical application of magnesium(Mg)and its alloys for bone fractures has been well supported by in vitro and in vivo trials.However,there were studies indicating negative effects of high dose Mg intake and susta...The clinical application of magnesium(Mg)and its alloys for bone fractures has been well supported by in vitro and in vivo trials.However,there were studies indicating negative effects of high dose Mg intake and sustained local release of Mg ions on bone metabolism or repair,which should not be ignored when developing Mg-based implants.Thus,it remains necessary to assess the biological effects of Mg implants in animal models relevant to clinical treatment modalities.The primary purpose of this study was to validate the beneficial effects of intramedullary Mg implants on the healing outcome of femoral fractures in a modified rat model.In addition,the mineralization parameters at multiple anatomical sites were evaluated,to investigate their association with healing outcome and potential clinical applications.Compared to the control group without Mg implantation,postoperative imaging at week 12 demonstrated better healing outcomes in the Mg group,with more stable unions in 3D analysis and high-mineralized bridging in 2D evaluation.The bone tissue mineral density(TMD)was higher in the Mg group at the non-operated femur and lumbar vertebra,while no differences between groups were identified regarding the bone tissue volume(TV),TMD and bone mineral content(BMC)in humerus.In the surgical femur,the Mg group presented higher TMD,but lower TV and BMC in the distal metaphyseal region,as well as reduced BMC at the osteotomy site.Principal component analysis(PCA)-based machine learning revealed that by selecting clinically relevant parameters,radiological markers could be constructed for differentiation of healing outcomes,with better performance than 2D scoring.The study provides insights and preclinical evidence for the rational investigation of bioactive materials,the identification of potential adverse effects,and the promotion of diagnostic capabilities for fracture healing.展开更多
The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel micr...The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.展开更多
Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the m...Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders. Ti-Tantalum(Ta)–Copper(Cu) alloys were further analyzed by the addition of Ta and Cu into the Ti3Al2V custom alloy. The biological,mechanical, and tribo-biocorrosion properties of Ti3Al2V alloy were evaluated. A 10 wt.% Ta(10Ta) and 3 wt.% Cu(3Cu) were added to the Ti3Al2V alloy to enhance biocompatibility and impart inherent bacterial resistance. Additively manufactured implants were investigated for resistance against Pseudomonas aeruginosa and Staphylococcus aureus strains of bacteria for up to 48 h. A 3 wt.% Cu addition to Ti3Al2V displayed improved antibacterial efficacy, i.e.78%–86% with respect to CpTi. Mechanical properties for Ti3Al2V–10Ta–3Cu alloy were evaluated, demonstrating excellent fatigue resistance, exceptional shear strength, and improved tribological and tribo-biocorrosion characteristics when compared to Ti6Al4V. In vivo studies using a rat distal femur model revealed improved early-stage osseointegration for alloys with10 wt.% Ta addition compared to CpTi and Ti6Al4V. The 3 wt.% Cu-added compositions displayed biocompatibility and no adverse infammatory response in vivo. Our results establish the Ti3Al2V–10Ta–3Cu alloy’s synergistic effect on improving both in vivo biocompatibility and microbial resistance for the next generation of load-bearing metallic implants.展开更多
In this editorial,we comprehensively summarized the preoperative risk factors of early permanent pacemaker implantation after transcatheter aortic valve replacement(TAVR)among patients with severe aortic stenosis from...In this editorial,we comprehensively summarized the preoperative risk factors of early permanent pacemaker implantation after transcatheter aortic valve replacement(TAVR)among patients with severe aortic stenosis from several renowned clinical studies and focused on the primary prevention of managing the modifiable factors,e.g.,paroxysmal atrial fibrillation before the TAVR.展开更多
Objective A high sodium(HS)diet is believed to affect bone metabolism processes.Clarifying its impact on osseointegration of titanium(Ti)implants holds significant implications for postoperative dietary management of ...Objective A high sodium(HS)diet is believed to affect bone metabolism processes.Clarifying its impact on osseointegration of titanium(Ti)implants holds significant implications for postoperative dietary management of implanted patients.Methods This investigation probed the impact of sodium ions(Na^(+))on neovascularization and osteogenesis around Ti implants in vivo,utilizing micro-computed tomography,hematoxylin and eosin staining,and immunohistochemical analyses.Concurrently,in vitro experiments assessed the effects of varied Na^(+)concentrations and exposure durations on human umbilical vein endothelial cells(HUVECs)and MC3T3-E1 cells.Results In vivo,increased dietary sodium(0.8%-6.0%)led to a substantial decline in CD34 positive HUVECs and new bone formation around Ti implants,alongside an increase in inflammatory cells.In vitro,an increase in Na^(+)concentration(140-150 mmol/L)adversely affected the proliferation,angiogenesis,and migration of HUVECs,especially with prolonged exposure.While MC3T3-E1 cells initially exhibited less susceptibility to high Na^(+)concentrations compared to HUVECs during short-term exposure,prolonged exposure to a HS environment progressively diminished their proliferation,differentiation,and osteogenic capabilities.Conclusion These findings suggest that HS diet had a negative effect on the early osseointegration of Ti implants by interfering with the process of postoperative vascularized bone regeneration.展开更多
Background Proteome characterization of the porcine endometrium and extraembryonic membranes is important to understand mother-embryo cross-communication.In this study,the proteome of the endometrium and cho-rioallant...Background Proteome characterization of the porcine endometrium and extraembryonic membranes is important to understand mother-embryo cross-communication.In this study,the proteome of the endometrium and cho-rioallantoic membrane was characterized in pregnant sows(PS)during early gestation(d 18 and 24 of gestation)and in the endometrium of non-pregnant sows(NPS)during the same days using LC-MS/MS analysis.The UniProtKB database and ClueGO were used to obtain functional Gene Ontology annotations and biological and functional networks,respectively.Results Our analysis yielded 3,254 and 3,457 proteins identified in the endometrium of PS and NPS,respectively;of these,1,753 being common while 1,501 and 1,704 were exclusive to PS and NPS,respectively.In addition,we iden-tified 3,968 proteins in the extraembryonic membranes of PS.Further analyses of function revealed some proteins had relevance for the immune system process and biological adhesion in endometrium while the embryonic chorion displayed abundance of proteins related to cell adhesion and cytoskeletal organization,suggesting they dominated the moment of endometrial remodeling,implantation and adhesion of the lining epithelia.Data are available via Pro-teomeXchange with identifier PXD042565.Conclusion This is the first in-depth proteomic characterization of the endometrium and extraembryonic mem-branes during weeks 3 to 4 of gestation;data that contribute to the molecular understanding of the dynamic environ-ment during this critical period,associated with the majority of pregnancy losses.展开更多
Biodegradable implants are critical for regenerative orthopaedic procedures,but they may suffer from too fast corrosion in human-body environment.This necessitates the synthesis of a suitable coating that may improve ...Biodegradable implants are critical for regenerative orthopaedic procedures,but they may suffer from too fast corrosion in human-body environment.This necessitates the synthesis of a suitable coating that may improve the corrosion resistance of these implants without compromising their mechanical integrity.In this study,an AZ91 magnesium alloy,as a representative for a biodegradable Mg implant material,was modified with a thin reduced graphene oxide(RGO)-calcium carbonate(CaCO_(3))composite coating.Detailed analytical and in-vitro electrochemical characterization reveals that this coating significantly improves the corrosion resistance and mechanical integrity,and thus has the potential to greatly extend the related application field.展开更多
Bioactive thermal spray coatings produced via high-velocity oxygen fuel spray(HVOF)from hydroxyapatite(HAp)and bioactive glasses(BG)have the potential to be employed on temporary implants due to the ability of both HA...Bioactive thermal spray coatings produced via high-velocity oxygen fuel spray(HVOF)from hydroxyapatite(HAp)and bioactive glasses(BG)have the potential to be employed on temporary implants due to the ability of both HAp and BG to dissolve and promote osseointegration,considering that both phases have different reaction and dissolution rates under in-vitro conditions.In the present work,75%wt.HAp-25%wt.S53P4 bioactive glass powders were HVOF-sprayed to obtain HAp/S53P4 BG composite coatings on a bioresorbable AZ31 alloy.The study is focused on exploring the effect of the stand-off distance and fuel/oxygen ratio variation as HVOF parameters to obtain stable structural coatings and to establish their effect on the phases and microstructure produced in those coatings.Different characterization techniques,such as scanning electron microscopy,X-ray diffraction,and Fourier transform infrared spectroscopy,were employed to characterize relevant structural and microstructural properties of the composite coatings.The results showed that thermal gradients during coating deposition must be managed to avoid delamination due to the high temperature achieved(max 550℃)and the differences in coefficients of thermal expansion.It was also found that both spraying distance and oxygen/fuel ratio allowed to keep the hydroxyapatite as the main phase in the coatings.In addition,in-vitro electrochemical studies were performed on the obtained HAp/S53P4 BG composite coatings and compared against the uncoated AZ31 alloy.The results showed a significant decrease in hydrogen evolution(at least 98%)when the bioactive coating was applied on the Mg alloy during evaluation in simulated body fluid(SBF).展开更多
Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and ...Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.展开更多
Background:Treatment of methicillin-resistant Staphylococcus aureus(MRSA)biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium(Ti)implants.There is a need to expl...Background:Treatment of methicillin-resistant Staphylococcus aureus(MRSA)biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium(Ti)implants.There is a need to explore more effective approaches for the treatment of MRSA biofilm infections.Methods:Herein,an interfacial functionalization strategy is proposed by the integration of mesoporous polydopamine nanoparticles(PDA),nitric oxide(NO)release donor sodium nitroprusside(SNP)and osteogenic growth peptide(OGP)onto Ti implants,denoted as Ti-PDA@SNP-OGP.The physical and chemical properties of Ti-PDA@SNP-OGP were assessed by scanning electron microscopy,X-ray photoelectron spectroscope,water contact angle,photothermal property and NO release behavior.The synergistic antibacterial effect and elimination of the MRSA biofilms were evaluated by 2′,7′-dichlorofluorescein diacetate probe,1-N-phenylnaphthylamine assay,adenosine triphosphate intensity,O-nitrophenyl-β-D-galactopyranoside hydrolysis activity,bicinchoninic acid leakage.Fluorescence staining,assays for alkaline phosphatase activity,collagen secretion and extracellular matrix mineralization,quantitative real‑time reverse transcription‑polymerase chain reaction,and enzyme-linked immunosorbent assay(ELISA)were used to evaluate the inflammatory response and osteogenic ability in bone marrow stromal cells(MSCs),RAW264.7 cells and their co-culture system.Giemsa staining,ELISA,micro-CT,hematoxylin and eosin,Masson's trichrome and immunohistochemistry staining were used to evaluate the eradication of MRSA biofilms,inhibition of inflammatory response,and promotion of osseointegration of Ti-PDA@SNP-OGP in vivo.Results:Ti-PDA@SNP-OGP displayed a synergistic photothermal and NO-dependent antibacterial effect against MRSA following near-infrared light(NIR)irradiation,and effectively eliminated the formed MRSA biofilms by inducing reactive oxygen species(ROS)-mediated oxidative stress,destroying bacterial membrane integrity and causing leakage of intracellular components(P<0.01).In vitro experiments revealed that Ti-PDA@SNP-OGP not only facilitated osteogenic differentiation of MSCs,but also promoted the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2-phenotype(P<0.05 or P<0.01).The favorable osteo-immune microenvironment further facilitated osteogenesis of MSCs and the anti-inflammation of RAW264.7 cells via multiple paracrine signaling pathways(P<0.01).In vivo evaluation confirmed the aforementioned results and revealed that Ti-PDA@SNP-OGP induced ameliorative osseointegration in an MRSA-infected femoral defect implantation model(P<0.01).Conclusions:Ti-PDA@SNP-OGP is a promising multi-functional material for the high-efficient treatment of MRSA infections in implant replacement surgeries.展开更多
Introduction:Cochlear implant is currently the most widely proven interventions for auditory rehabilitation for children with severe sensorineural hearing impairment.However,there are obvious limitations in these curr...Introduction:Cochlear implant is currently the most widely proven interventions for auditory rehabilitation for children with severe sensorineural hearing impairment.However,there are obvious limitations in these current evaluation methods.This study aims to develop an evaluation system for quantitatively evaluating the effectiveness of cochlear implants for hearing-impaired children.Methods:A correspondence questionnaire was developed based on an initial indicator system that was developed based on the literature focused on the evaluation of cochlear implant outcomes in children.Twenty-five experts in otology,clinical audiology,rehabilitation audiology,and mental health from nine provinces in China were consulted.The degree of authority and coordination of experts and the indicators and weights of the quantitative evaluation system were analyzed.Seventy-eight children aged 3–11 years after cochlear implantation were recruited from two centers in Hubei province to evaluate the reliability and validity of the quantitative evaluation system.Results:The opinions of experts converged after the second round of correspondence,and the coordination and authority of the expert consensus were met.The recall rate of the questionnaire was 100%for both rounds.Five secondary indicators,including auditory ability,verbal ability,behavioral assessment,learning capabilities,and quality of life,and 13 tertiary indicators were reserved for the evaluation of cochlear implant effectiveness.The weight of each indicator was calculated.The Cronbach’sαcoefficient of the quantitative evaluation system based on the standardized items was 0.930,and the three extracted common factors could explain 78.86%of the total variance.Conclusions:An expert consensus-based evaluation system that can quantitatively evaluate the effectiveness of cochlear implants in children has been developed with good reliability and validity.展开更多
AIM:To compare the exposure rate,infection rate,percentage of enhancement,and success rate between Medpor and the three-dimensional printed polyethylene(3DP-PE)orbital implant in a preliminary report.METHODS:This pros...AIM:To compare the exposure rate,infection rate,percentage of enhancement,and success rate between Medpor and the three-dimensional printed polyethylene(3DP-PE)orbital implant in a preliminary report.METHODS:This prospective,randomized,equivalence,controlled trial was conducted at two institutes.The equivalent margin was±10%.The sample size for the equivalence trial was 174 participants per group.Patients who were eligible for enucleations received either Medpor or 3DP-PE implants based on a randomized block of six.The surgeries were performed by five oculoplastic surgeons.The assessor and patients were masked.The magnetic resonance imaging(MRI)of the orbit was performed at least 6mo after operation and the fibrovascular ingrowth was analyzed using the Image J software.Follow-up continued at least 1y after surgery.The intention to treat and per protocol approaches were used.RESULTS:Totally 128 patients met the criteria in the report.Fifty Medpor and 553DP-PE cases completed the trial.The most common cause of blindness was trauma.The mean follow-up times of Medpor and 3DP-PE were 33 and 40mo respectively.The exposure rate was not statistically significant between two groups(6.0%and 7.3%),P<0.05,95%CI(-9.8%,+12.0%).The success rates were 94%(Medpor)and 92.7%(3DP-PE).No postoperative infection was reported.Nine patients had MRI tests and two had implant exposures with 66.3% enhancement at 75mo(Medpor)and 58% enhancement at 57mo(3DP-PE)postoperatively.CONCLUSION:There is no statistically significant difference in exposure rate and success rate between Medpor and 3DP-PE in enucleation in the report.However,we cannot conclude that they are equivalent in terms of the exposure rate and success rate because the 95%CI is wider than±10%.The infection rate is equivalent in both groups.展开更多
In this study,Mg-based composites,by the addition of ZnO,Ca_(2)ZnSi_(2)O_(7),Ca_(2)MgSi_(2)O_(7),and CaSiO_(3)as bioactive agents,were fabricated using friction stir processing.The microstructure and in vitro assessme...In this study,Mg-based composites,by the addition of ZnO,Ca_(2)ZnSi_(2)O_(7),Ca_(2)MgSi_(2)O_(7),and CaSiO_(3)as bioactive agents,were fabricated using friction stir processing.The microstructure and in vitro assessment of bioactivity,biodegradation rate,and corrosion behavior of the resultant composites were investigated in simulated body fluid(SBF).The results showed that during the immersion of composites in SBF for 28 d,due to the release of Ca^(2+)and PO_(4)^(3-)ions,hydroxyapatite(HA)crystals with cauliflower shaped morphology were deposited on the surface of composites,confirming good bioactivity of composites.In addition,due to the uniform distribution of bioceramic powders throughout Mg matrix,grain refinement of the Mg matrix,and uniform redistribution of secondary phase particles,the polarization resistance increased,and the biodegradation rate of composites significantly reduced compared to monolithic Mg matrix.The polarization corrosion resistance of Mg-ZnO increased from 0.216 to 2.499 kΩ/cm^(2)compared to monolithic Mg alloy.Additionally,Mg-ZnO composite with the weight loss of 0.0217 g after 28 d immersion showed lower weight loss compared to other samples with increasing immersion time.Moreover,Mg-ZnO composite with the biodegradation rate of 37.71 mm/a exhibited lower biodegradation rate compared to other samples with increasing immersion time.展开更多
Degenerative calcific aortic valve stenosis(AS)is the most common valvular heart disease in elderly.^[1] It is well documented that symptomatic severe AS follows a malignant course leading to cardiogenic shock(CS).
This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design co...This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design considerations,such as biological constraints,energy sourcing,and wireless communication,are discussed in achieving the desired performance of the devices and enhanced interface with human tissues.In addition,we review the recent achievements in materials used for developing implantable systems,emphasizing their importance in achieving multi-functionalities,biocompatibility,and hemocompatibility.The wireless,batteryless devices offer minimally invasive device insertion to the body,enabling portable health monitoring and advanced disease diagnosis.Lastly,we summarize the most recent practical applications of advanced implantable devices for human health care,highlighting their potential for immediate commercialization and clinical uses.展开更多
Cochlear implantation(CI)is currently recognized as the most effective treatment for severe to profound sensorineural deafness and is considered one of the most successful neural prostheses.Since its inception in 1961...Cochlear implantation(CI)is currently recognized as the most effective treatment for severe to profound sensorineural deafness and is considered one of the most successful neural prostheses.Since its inception in 1961,cochlear implantation has expanded its range of applications to encompass younger newborns,older people,and individuals with unilateral hearing loss.In addition,it has improved its surgical methods to minimize the occurrence of complications.Furthermore,notable advancements have been made in the design of electrodes,techniques for speech processing,and software for programming.Nevertheless,inflammation,fibrosis,and even ossification are observed in the cochlea of nearly all cochlear implant(CI)patients.These tissue responses might have a negative impact on the performance of the implants,residual hearing,and the results of post-operative CI rehabilitation.Animal models are significant translational tools that offer essential preclinical data for possible therapeutics.Thus,this study concentrates on the existing animal models used for cochlear implantation,highlights the advancements made in research,and offers insights into potential future research areas.展开更多
Background In the last years,transcatheter aortic valve implantation(TAVI)indication has expanded to younger and lower risk patients.Consequently,interest in mid and long-term follow up and in the role of life expecta...Background In the last years,transcatheter aortic valve implantation(TAVI)indication has expanded to younger and lower risk patients.Consequently,interest in mid and long-term follow up and in the role of life expectancy,as a key factor for selecting the most tailored treatment,has grown.The aim of this retrospective study is to compare the 4-year survival of patients who underwent aortic valve replacement(AVR)vs.TAVI at our department.Methods From September 2017 to December 2020,673 consecutive patients with severe aortic valve stenosis were enrolled for AVR(n=283)or TAVI(n=390).Inclusion criteria was isolated severe aortic stenosis,while exclusion criteria were redo surgery,valve-in-valve procedure and the need for concomitant surgical procedures.Based on the Lee index,patients were divided into four groups according to their 4-year life expectancy.Four-year survival was assessed and reported using the Kaplan-Meier method.A multivariate regression analysis of risk factors for 4-year mortality was performed.Results Four years survival is always superior in the AVR patients(89.8%vs.75.6%,P<0.001).Surgery is associated with a higher incidence of acute kidney injury(23%vs.5.1%,P<0.001),while TAVI is related to a higher incidence of new onset left bundle branch block(0 vs.23.8%,P<0.001),pace-maker implantation(2.5%vs.11.8%,P=0,02)and mild-to-moderate paravalvular leak(0.3%vs.5.4%,P<0.001).The independent risk factors for 4-years mortality are post-procedural AKI,poor mobility and transcatheter procedure.Conclusion In our analysis,4 years survival is always superior in the AVR patients.Life expectancy is a key factor for selecting the most appropriate approach for each patient.A longer follow up is mandatory before extending TAVI indication to patients with a long-life expectancy.展开更多
文摘Long-term contraception subdermal implant made bylevonorgestrel and silastic tube have the adventure oflong-term use,high quality,good recovery afterremoving.It is a very popular contraceptive method.Forsafety of using implant,the mutagenic effects of implantin Ames-test,Micronucleis-test and on Chinese HamsterOvary(CHO) Cell is reported.
基金a grant from the state of Schleswig-Holstein and the European Union ERDF-European Regional Development Fund(Zukunftsprogramm Wirtschaft)。
文摘Historically,the rapid degradation and massive gas release from magnesium(Mg)implants resulted in severe emphysema and mechanical failure.With the advent of new alloys and surface treatment methods,optimized Mg implants have re-entered clinics since last decade with reliable performance.However,the optimization aims at slowing down the degradation process,rather than exemption of the gas release.This study involved a systematic evaluation of current preclinical and clinical evidence,regarding the physical signs,symptoms,radiological features,pathological findings and complications potentially associated with peri±implant gas accumulation(PIGA)after musculoskeletal Mg implantation.The literature search identified 196 potentially relevant publications,and 51 papers were enrolled for further analysis,including 22 preclinical tests and 29 clinical studies published from 2005 to 2023.Various Mg-based materials have been evaluated in animal research,and the application of pure Mg and Mg alloys have been reported in clinical follow-ups involving multiple anatomical sites and musculoskeletal disorders.Soft tissue and intraosseous PIGA are common in both animal tests and clinical follow-ups,and potentially associated with certain adverse events.Radiological examinations especially micro-CT and clinical CT scans provide valuable information for quantitative and longitudinal analysis.While according to simulation tests involving Mg implantation and chemical processing,tissue fixation could lead to an increase in the volume of gas cavity,thus the results obtained from ex vivo imaging or histopathological evaluations should be interpreted with caution.There still lacks standardized procedures or consensus for both preclinical and clinical evaluation of PIGA.However,by providing focused insights into the topic,this evidence-based study will facilitate future animal tests and clinical evaluations,and support developing biocompatible Mg implants for the treatment of musculoskeletal disorders.
文摘The clinical application of magnesium(Mg)and its alloys for bone fractures has been well supported by in vitro and in vivo trials.However,there were studies indicating negative effects of high dose Mg intake and sustained local release of Mg ions on bone metabolism or repair,which should not be ignored when developing Mg-based implants.Thus,it remains necessary to assess the biological effects of Mg implants in animal models relevant to clinical treatment modalities.The primary purpose of this study was to validate the beneficial effects of intramedullary Mg implants on the healing outcome of femoral fractures in a modified rat model.In addition,the mineralization parameters at multiple anatomical sites were evaluated,to investigate their association with healing outcome and potential clinical applications.Compared to the control group without Mg implantation,postoperative imaging at week 12 demonstrated better healing outcomes in the Mg group,with more stable unions in 3D analysis and high-mineralized bridging in 2D evaluation.The bone tissue mineral density(TMD)was higher in the Mg group at the non-operated femur and lumbar vertebra,while no differences between groups were identified regarding the bone tissue volume(TV),TMD and bone mineral content(BMC)in humerus.In the surgical femur,the Mg group presented higher TMD,but lower TV and BMC in the distal metaphyseal region,as well as reduced BMC at the osteotomy site.Principal component analysis(PCA)-based machine learning revealed that by selecting clinically relevant parameters,radiological markers could be constructed for differentiation of healing outcomes,with better performance than 2D scoring.The study provides insights and preclinical evidence for the rational investigation of bioactive materials,the identification of potential adverse effects,and the promotion of diagnostic capabilities for fracture healing.
基金funded by the National Natural Science Foundation of China(Nos.L2224042,T2293731,62121003,61960206012,61973292,62171434,61975206,and 61971400)the Frontier Interdisciplinary Project of the Chinese Academy of Sciences(No.XK2022XXC003)+2 种基金the National Key Research and Development Program of China(Nos.2022YFC2402501 and 2022YFB3205602)the Major Program of Scientific and Technical Innovation 2030(No.2021ZD02016030)the Scientific Instrument Developing Project of he Chinese Academy of Sciences(No.GJJSTD20210004).
文摘The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.
基金supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Numbers R01 AR067306 and R01 AR078241。
文摘Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders. Ti-Tantalum(Ta)–Copper(Cu) alloys were further analyzed by the addition of Ta and Cu into the Ti3Al2V custom alloy. The biological,mechanical, and tribo-biocorrosion properties of Ti3Al2V alloy were evaluated. A 10 wt.% Ta(10Ta) and 3 wt.% Cu(3Cu) were added to the Ti3Al2V alloy to enhance biocompatibility and impart inherent bacterial resistance. Additively manufactured implants were investigated for resistance against Pseudomonas aeruginosa and Staphylococcus aureus strains of bacteria for up to 48 h. A 3 wt.% Cu addition to Ti3Al2V displayed improved antibacterial efficacy, i.e.78%–86% with respect to CpTi. Mechanical properties for Ti3Al2V–10Ta–3Cu alloy were evaluated, demonstrating excellent fatigue resistance, exceptional shear strength, and improved tribological and tribo-biocorrosion characteristics when compared to Ti6Al4V. In vivo studies using a rat distal femur model revealed improved early-stage osseointegration for alloys with10 wt.% Ta addition compared to CpTi and Ti6Al4V. The 3 wt.% Cu-added compositions displayed biocompatibility and no adverse infammatory response in vivo. Our results establish the Ti3Al2V–10Ta–3Cu alloy’s synergistic effect on improving both in vivo biocompatibility and microbial resistance for the next generation of load-bearing metallic implants.
文摘In this editorial,we comprehensively summarized the preoperative risk factors of early permanent pacemaker implantation after transcatheter aortic valve replacement(TAVR)among patients with severe aortic stenosis from several renowned clinical studies and focused on the primary prevention of managing the modifiable factors,e.g.,paroxysmal atrial fibrillation before the TAVR.
基金funded by the Wenzhou Public Welfare Science and Technology Project(Y2020118)Zhejiang Provincial Science and Technology Project for Public Welfare(LQ23H140001)Wenzhou Medical University Basic Scientific Research Operating Expenses(KYYW202230).
文摘Objective A high sodium(HS)diet is believed to affect bone metabolism processes.Clarifying its impact on osseointegration of titanium(Ti)implants holds significant implications for postoperative dietary management of implanted patients.Methods This investigation probed the impact of sodium ions(Na^(+))on neovascularization and osteogenesis around Ti implants in vivo,utilizing micro-computed tomography,hematoxylin and eosin staining,and immunohistochemical analyses.Concurrently,in vitro experiments assessed the effects of varied Na^(+)concentrations and exposure durations on human umbilical vein endothelial cells(HUVECs)and MC3T3-E1 cells.Results In vivo,increased dietary sodium(0.8%-6.0%)led to a substantial decline in CD34 positive HUVECs and new bone formation around Ti implants,alongside an increase in inflammatory cells.In vitro,an increase in Na^(+)concentration(140-150 mmol/L)adversely affected the proliferation,angiogenesis,and migration of HUVECs,especially with prolonged exposure.While MC3T3-E1 cells initially exhibited less susceptibility to high Na^(+)concentrations compared to HUVECs during short-term exposure,prolonged exposure to a HS environment progressively diminished their proliferation,differentiation,and osteogenic capabilities.Conclusion These findings suggest that HS diet had a negative effect on the early osseointegration of Ti implants by interfering with the process of postoperative vascularized bone regeneration.
基金This research was funded by the MCIN/AEI/https://doi.org/10.13039/501100011033,ERDF(PID2022137645OB-I00),Madrid,SpainFundacion Seneca(19892/GERM/15),Murcia,Spainthe Swedish Research Council FORMAS(Project 2019-00288),Stockholm,Sweden.
文摘Background Proteome characterization of the porcine endometrium and extraembryonic membranes is important to understand mother-embryo cross-communication.In this study,the proteome of the endometrium and cho-rioallantoic membrane was characterized in pregnant sows(PS)during early gestation(d 18 and 24 of gestation)and in the endometrium of non-pregnant sows(NPS)during the same days using LC-MS/MS analysis.The UniProtKB database and ClueGO were used to obtain functional Gene Ontology annotations and biological and functional networks,respectively.Results Our analysis yielded 3,254 and 3,457 proteins identified in the endometrium of PS and NPS,respectively;of these,1,753 being common while 1,501 and 1,704 were exclusive to PS and NPS,respectively.In addition,we iden-tified 3,968 proteins in the extraembryonic membranes of PS.Further analyses of function revealed some proteins had relevance for the immune system process and biological adhesion in endometrium while the embryonic chorion displayed abundance of proteins related to cell adhesion and cytoskeletal organization,suggesting they dominated the moment of endometrial remodeling,implantation and adhesion of the lining epithelia.Data are available via Pro-teomeXchange with identifier PXD042565.Conclusion This is the first in-depth proteomic characterization of the endometrium and extraembryonic mem-branes during weeks 3 to 4 of gestation;data that contribute to the molecular understanding of the dynamic environ-ment during this critical period,associated with the majority of pregnancy losses.
文摘Biodegradable implants are critical for regenerative orthopaedic procedures,but they may suffer from too fast corrosion in human-body environment.This necessitates the synthesis of a suitable coating that may improve the corrosion resistance of these implants without compromising their mechanical integrity.In this study,an AZ91 magnesium alloy,as a representative for a biodegradable Mg implant material,was modified with a thin reduced graphene oxide(RGO)-calcium carbonate(CaCO_(3))composite coating.Detailed analytical and in-vitro electrochemical characterization reveals that this coating significantly improves the corrosion resistance and mechanical integrity,and thus has the potential to greatly extend the related application field.
基金the National Council of Humanities,Science,and Technology(CONAHCYT)through the"Investigadores por Mexico"program,projects 848 and 881。
文摘Bioactive thermal spray coatings produced via high-velocity oxygen fuel spray(HVOF)from hydroxyapatite(HAp)and bioactive glasses(BG)have the potential to be employed on temporary implants due to the ability of both HAp and BG to dissolve and promote osseointegration,considering that both phases have different reaction and dissolution rates under in-vitro conditions.In the present work,75%wt.HAp-25%wt.S53P4 bioactive glass powders were HVOF-sprayed to obtain HAp/S53P4 BG composite coatings on a bioresorbable AZ31 alloy.The study is focused on exploring the effect of the stand-off distance and fuel/oxygen ratio variation as HVOF parameters to obtain stable structural coatings and to establish their effect on the phases and microstructure produced in those coatings.Different characterization techniques,such as scanning electron microscopy,X-ray diffraction,and Fourier transform infrared spectroscopy,were employed to characterize relevant structural and microstructural properties of the composite coatings.The results showed that thermal gradients during coating deposition must be managed to avoid delamination due to the high temperature achieved(max 550℃)and the differences in coefficients of thermal expansion.It was also found that both spraying distance and oxygen/fuel ratio allowed to keep the hydroxyapatite as the main phase in the coatings.In addition,in-vitro electrochemical studies were performed on the obtained HAp/S53P4 BG composite coatings and compared against the uncoated AZ31 alloy.The results showed a significant decrease in hydrogen evolution(at least 98%)when the bioactive coating was applied on the Mg alloy during evaluation in simulated body fluid(SBF).
基金Supported by National Natural Science Foundation of China (Grant Nos.52235011,51905352)Shenzhen Municipal Excellent Science and Technology Creative Talent Training Program (Grant No.RCBS20210609103819021)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No.2023B1515120086)Shenzhen Municipal Science and Technology Planning Project (Grant No.CJGJZD20230724093600001)。
文摘Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.
基金financially supported by the National Natural Science Foundation of China(82101069,82102537,82160411,82002278)the Natural Science Foundation of Chongqing Science and Technology Commission(CSTC2021JCYJ-MSXMX0170,CSTB2022BSXM-JCX0039)+2 种基金the First Affiliated Hospital of Chongqing Medical University Cultivating Fund(PYJJ2021-02)the Beijing Municipal Science&Technology Commission(Z221100007422130)the Youth Incubation Program of Medical Science and Technology of PLA(21QNPY116).
文摘Background:Treatment of methicillin-resistant Staphylococcus aureus(MRSA)biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium(Ti)implants.There is a need to explore more effective approaches for the treatment of MRSA biofilm infections.Methods:Herein,an interfacial functionalization strategy is proposed by the integration of mesoporous polydopamine nanoparticles(PDA),nitric oxide(NO)release donor sodium nitroprusside(SNP)and osteogenic growth peptide(OGP)onto Ti implants,denoted as Ti-PDA@SNP-OGP.The physical and chemical properties of Ti-PDA@SNP-OGP were assessed by scanning electron microscopy,X-ray photoelectron spectroscope,water contact angle,photothermal property and NO release behavior.The synergistic antibacterial effect and elimination of the MRSA biofilms were evaluated by 2′,7′-dichlorofluorescein diacetate probe,1-N-phenylnaphthylamine assay,adenosine triphosphate intensity,O-nitrophenyl-β-D-galactopyranoside hydrolysis activity,bicinchoninic acid leakage.Fluorescence staining,assays for alkaline phosphatase activity,collagen secretion and extracellular matrix mineralization,quantitative real‑time reverse transcription‑polymerase chain reaction,and enzyme-linked immunosorbent assay(ELISA)were used to evaluate the inflammatory response and osteogenic ability in bone marrow stromal cells(MSCs),RAW264.7 cells and their co-culture system.Giemsa staining,ELISA,micro-CT,hematoxylin and eosin,Masson's trichrome and immunohistochemistry staining were used to evaluate the eradication of MRSA biofilms,inhibition of inflammatory response,and promotion of osseointegration of Ti-PDA@SNP-OGP in vivo.Results:Ti-PDA@SNP-OGP displayed a synergistic photothermal and NO-dependent antibacterial effect against MRSA following near-infrared light(NIR)irradiation,and effectively eliminated the formed MRSA biofilms by inducing reactive oxygen species(ROS)-mediated oxidative stress,destroying bacterial membrane integrity and causing leakage of intracellular components(P<0.01).In vitro experiments revealed that Ti-PDA@SNP-OGP not only facilitated osteogenic differentiation of MSCs,but also promoted the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2-phenotype(P<0.05 or P<0.01).The favorable osteo-immune microenvironment further facilitated osteogenesis of MSCs and the anti-inflammation of RAW264.7 cells via multiple paracrine signaling pathways(P<0.01).In vivo evaluation confirmed the aforementioned results and revealed that Ti-PDA@SNP-OGP induced ameliorative osseointegration in an MRSA-infected femoral defect implantation model(P<0.01).Conclusions:Ti-PDA@SNP-OGP is a promising multi-functional material for the high-efficient treatment of MRSA infections in implant replacement surgeries.
基金supported by theHubei Disabled Persons Federation。
文摘Introduction:Cochlear implant is currently the most widely proven interventions for auditory rehabilitation for children with severe sensorineural hearing impairment.However,there are obvious limitations in these current evaluation methods.This study aims to develop an evaluation system for quantitatively evaluating the effectiveness of cochlear implants for hearing-impaired children.Methods:A correspondence questionnaire was developed based on an initial indicator system that was developed based on the literature focused on the evaluation of cochlear implant outcomes in children.Twenty-five experts in otology,clinical audiology,rehabilitation audiology,and mental health from nine provinces in China were consulted.The degree of authority and coordination of experts and the indicators and weights of the quantitative evaluation system were analyzed.Seventy-eight children aged 3–11 years after cochlear implantation were recruited from two centers in Hubei province to evaluate the reliability and validity of the quantitative evaluation system.Results:The opinions of experts converged after the second round of correspondence,and the coordination and authority of the expert consensus were met.The recall rate of the questionnaire was 100%for both rounds.Five secondary indicators,including auditory ability,verbal ability,behavioral assessment,learning capabilities,and quality of life,and 13 tertiary indicators were reserved for the evaluation of cochlear implant effectiveness.The weight of each indicator was calculated.The Cronbach’sαcoefficient of the quantitative evaluation system based on the standardized items was 0.930,and the three extracted common factors could explain 78.86%of the total variance.Conclusions:An expert consensus-based evaluation system that can quantitatively evaluate the effectiveness of cochlear implants in children has been developed with good reliability and validity.
基金Supported by the Mettapracharak grantThai Government Budget grant+1 种基金Health Systems Research Institute grantNational Science and Technology Development Agency grant.
文摘AIM:To compare the exposure rate,infection rate,percentage of enhancement,and success rate between Medpor and the three-dimensional printed polyethylene(3DP-PE)orbital implant in a preliminary report.METHODS:This prospective,randomized,equivalence,controlled trial was conducted at two institutes.The equivalent margin was±10%.The sample size for the equivalence trial was 174 participants per group.Patients who were eligible for enucleations received either Medpor or 3DP-PE implants based on a randomized block of six.The surgeries were performed by five oculoplastic surgeons.The assessor and patients were masked.The magnetic resonance imaging(MRI)of the orbit was performed at least 6mo after operation and the fibrovascular ingrowth was analyzed using the Image J software.Follow-up continued at least 1y after surgery.The intention to treat and per protocol approaches were used.RESULTS:Totally 128 patients met the criteria in the report.Fifty Medpor and 553DP-PE cases completed the trial.The most common cause of blindness was trauma.The mean follow-up times of Medpor and 3DP-PE were 33 and 40mo respectively.The exposure rate was not statistically significant between two groups(6.0%and 7.3%),P<0.05,95%CI(-9.8%,+12.0%).The success rates were 94%(Medpor)and 92.7%(3DP-PE).No postoperative infection was reported.Nine patients had MRI tests and two had implant exposures with 66.3% enhancement at 75mo(Medpor)and 58% enhancement at 57mo(3DP-PE)postoperatively.CONCLUSION:There is no statistically significant difference in exposure rate and success rate between Medpor and 3DP-PE in enucleation in the report.However,we cannot conclude that they are equivalent in terms of the exposure rate and success rate because the 95%CI is wider than±10%.The infection rate is equivalent in both groups.
文摘In this study,Mg-based composites,by the addition of ZnO,Ca_(2)ZnSi_(2)O_(7),Ca_(2)MgSi_(2)O_(7),and CaSiO_(3)as bioactive agents,were fabricated using friction stir processing.The microstructure and in vitro assessment of bioactivity,biodegradation rate,and corrosion behavior of the resultant composites were investigated in simulated body fluid(SBF).The results showed that during the immersion of composites in SBF for 28 d,due to the release of Ca^(2+)and PO_(4)^(3-)ions,hydroxyapatite(HA)crystals with cauliflower shaped morphology were deposited on the surface of composites,confirming good bioactivity of composites.In addition,due to the uniform distribution of bioceramic powders throughout Mg matrix,grain refinement of the Mg matrix,and uniform redistribution of secondary phase particles,the polarization resistance increased,and the biodegradation rate of composites significantly reduced compared to monolithic Mg matrix.The polarization corrosion resistance of Mg-ZnO increased from 0.216 to 2.499 kΩ/cm^(2)compared to monolithic Mg alloy.Additionally,Mg-ZnO composite with the weight loss of 0.0217 g after 28 d immersion showed lower weight loss compared to other samples with increasing immersion time.Moreover,Mg-ZnO composite with the biodegradation rate of 37.71 mm/a exhibited lower biodegradation rate compared to other samples with increasing immersion time.
文摘Degenerative calcific aortic valve stenosis(AS)is the most common valvular heart disease in elderly.^[1] It is well documented that symptomatic severe AS follows a malignant course leading to cardiogenic shock(CS).
基金the NSF CCSS-2152638 and the IEN Center Grant from the Institute for Electronics and Nanotechnology at Georgia Tech.
文摘This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design considerations,such as biological constraints,energy sourcing,and wireless communication,are discussed in achieving the desired performance of the devices and enhanced interface with human tissues.In addition,we review the recent achievements in materials used for developing implantable systems,emphasizing their importance in achieving multi-functionalities,biocompatibility,and hemocompatibility.The wireless,batteryless devices offer minimally invasive device insertion to the body,enabling portable health monitoring and advanced disease diagnosis.Lastly,we summarize the most recent practical applications of advanced implantable devices for human health care,highlighting their potential for immediate commercialization and clinical uses.
基金supported by the following:(1)National Natural Science Foundation of China(NSFC#82000976)to Jianan Li(2)National Key Research and Development Program of China(2022YFC2402700)to Wei Chen.
文摘Cochlear implantation(CI)is currently recognized as the most effective treatment for severe to profound sensorineural deafness and is considered one of the most successful neural prostheses.Since its inception in 1961,cochlear implantation has expanded its range of applications to encompass younger newborns,older people,and individuals with unilateral hearing loss.In addition,it has improved its surgical methods to minimize the occurrence of complications.Furthermore,notable advancements have been made in the design of electrodes,techniques for speech processing,and software for programming.Nevertheless,inflammation,fibrosis,and even ossification are observed in the cochlea of nearly all cochlear implant(CI)patients.These tissue responses might have a negative impact on the performance of the implants,residual hearing,and the results of post-operative CI rehabilitation.Animal models are significant translational tools that offer essential preclinical data for possible therapeutics.Thus,this study concentrates on the existing animal models used for cochlear implantation,highlights the advancements made in research,and offers insights into potential future research areas.
文摘Background In the last years,transcatheter aortic valve implantation(TAVI)indication has expanded to younger and lower risk patients.Consequently,interest in mid and long-term follow up and in the role of life expectancy,as a key factor for selecting the most tailored treatment,has grown.The aim of this retrospective study is to compare the 4-year survival of patients who underwent aortic valve replacement(AVR)vs.TAVI at our department.Methods From September 2017 to December 2020,673 consecutive patients with severe aortic valve stenosis were enrolled for AVR(n=283)or TAVI(n=390).Inclusion criteria was isolated severe aortic stenosis,while exclusion criteria were redo surgery,valve-in-valve procedure and the need for concomitant surgical procedures.Based on the Lee index,patients were divided into four groups according to their 4-year life expectancy.Four-year survival was assessed and reported using the Kaplan-Meier method.A multivariate regression analysis of risk factors for 4-year mortality was performed.Results Four years survival is always superior in the AVR patients(89.8%vs.75.6%,P<0.001).Surgery is associated with a higher incidence of acute kidney injury(23%vs.5.1%,P<0.001),while TAVI is related to a higher incidence of new onset left bundle branch block(0 vs.23.8%,P<0.001),pace-maker implantation(2.5%vs.11.8%,P=0,02)and mild-to-moderate paravalvular leak(0.3%vs.5.4%,P<0.001).The independent risk factors for 4-years mortality are post-procedural AKI,poor mobility and transcatheter procedure.Conclusion In our analysis,4 years survival is always superior in the AVR patients.Life expectancy is a key factor for selecting the most appropriate approach for each patient.A longer follow up is mandatory before extending TAVI indication to patients with a long-life expectancy.