A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions a...A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.展开更多
Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boun...Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boundary conditions are made dimensionless using a set of non-dimensional parameters. The governing equations are solved numerically using the finite difference method. Numerical results are obtained for various values of viscosity variation parameter, Prandtl number, magnetic parameter, and conjugate conduction parameter for the velocity and the temperature within the boundary layer as well as the skin friction coefficients and heat transfer rate along the surface.展开更多
The main theme of this research is to find the numerical results of stagnation point flow of micropolar fluid over a porous stretchable surface due to the physical effects of internal heat generation/absorption,meltin...The main theme of this research is to find the numerical results of stagnation point flow of micropolar fluid over a porous stretchable surface due to the physical effects of internal heat generation/absorption,melting heat transfer and chemical reaction via Keller-Box method(KBM).The graphs and tables are depicted and explained for various embedded parameters.The range of melting heat transfer parameter is 0≤M≤3,the range of chemical reaction parameter is 0≤K_(r)≤1 whereas the values of space-temperature dependent heat source/sink parameters lies in-0:4≤Q≤0:4 and-2≤Q*≤2.The upshots of the current problem illustrate that at fluid-solid interface,rate of HMT(heat and mass transfer)declined on escalating the values of stretching parameter.Moreover,as the values of internal heat source/sink parameter increases,heat transfer rate declines at fluid-solid interface.展开更多
基金Project (50975263) supported by the National Natural Science Foundation of ChinaProject (2010081015) supported by International Cooperation Project of Shanxi Province, China+1 种基金 Project (2010-78) supported by the Scholarship Council in Shanxi province, ChinaProject (2010420120005) supported by Doctoral Fund of Ministry of Education of China
文摘A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.
文摘Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boundary conditions are made dimensionless using a set of non-dimensional parameters. The governing equations are solved numerically using the finite difference method. Numerical results are obtained for various values of viscosity variation parameter, Prandtl number, magnetic parameter, and conjugate conduction parameter for the velocity and the temperature within the boundary layer as well as the skin friction coefficients and heat transfer rate along the surface.
文摘The main theme of this research is to find the numerical results of stagnation point flow of micropolar fluid over a porous stretchable surface due to the physical effects of internal heat generation/absorption,melting heat transfer and chemical reaction via Keller-Box method(KBM).The graphs and tables are depicted and explained for various embedded parameters.The range of melting heat transfer parameter is 0≤M≤3,the range of chemical reaction parameter is 0≤K_(r)≤1 whereas the values of space-temperature dependent heat source/sink parameters lies in-0:4≤Q≤0:4 and-2≤Q*≤2.The upshots of the current problem illustrate that at fluid-solid interface,rate of HMT(heat and mass transfer)declined on escalating the values of stretching parameter.Moreover,as the values of internal heat source/sink parameter increases,heat transfer rate declines at fluid-solid interface.