期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
New algorithm for solving 3D incompressible viscous equations based on projection method
1
作者 牛晓峰 梁伟 +4 位作者 赵宇宏 侯华 穆彦青 黄志伟 杨伟明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第8期1826-1832,共7页
A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions a... A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method. 展开更多
关键词 implicit finite difference method 3D incompressible viscous equations projection method nonparametric statistics
下载PDF
Magnetohydrodynamic Conjugate Free Convective Heat Transfer Analysis of an Isothermal Horizontal Circular Cylinder with Temperature Dependent Viscosity
2
作者 NHM. A. Azim 《Journal of Applied Mathematics and Physics》 2024年第10期3384-3401,共18页
Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boun... Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boundary conditions are made dimensionless using a set of non-dimensional parameters. The governing equations are solved numerically using the finite difference method. Numerical results are obtained for various values of viscosity variation parameter, Prandtl number, magnetic parameter, and conjugate conduction parameter for the velocity and the temperature within the boundary layer as well as the skin friction coefficients and heat transfer rate along the surface. 展开更多
关键词 Conjugate Free Convection Horizontal Circular Cylinder implicit finite difference method MHD Temperature Dependent Viscosity
下载PDF
Numerical solution of micropolar fluid flow via stretchable surface with chemical reaction and melting heat transfer using Keller-Box method 被引量:3
3
作者 Khilap Singh Alok Kumar Pandey Manoj Kumar 《Propulsion and Power Research》 SCIE 2021年第2期194-207,共14页
The main theme of this research is to find the numerical results of stagnation point flow of micropolar fluid over a porous stretchable surface due to the physical effects of internal heat generation/absorption,meltin... The main theme of this research is to find the numerical results of stagnation point flow of micropolar fluid over a porous stretchable surface due to the physical effects of internal heat generation/absorption,melting heat transfer and chemical reaction via Keller-Box method(KBM).The graphs and tables are depicted and explained for various embedded parameters.The range of melting heat transfer parameter is 0≤M≤3,the range of chemical reaction parameter is 0≤K_(r)≤1 whereas the values of space-temperature dependent heat source/sink parameters lies in-0:4≤Q≤0:4 and-2≤Q*≤2.The upshots of the current problem illustrate that at fluid-solid interface,rate of HMT(heat and mass transfer)declined on escalating the values of stretching parameter.Moreover,as the values of internal heat source/sink parameter increases,heat transfer rate declines at fluid-solid interface. 展开更多
关键词 Chemical reaction implicit finite difference Keller-Box method(KBM) Internal heat generation/absorption Heat and mass transfer(HMT) Melting heat transfer Porous medium
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部