期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Research on a Monte Carlo global variance reduction method based on an automatic importance sampling method
1
作者 Yi-Sheng Hao Zhen Wu +3 位作者 Shen-Shen Gao Rui Qiu Hui Zhang Jun-Li Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期200-215,共16页
Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS m... Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS method for the global variance reduction problem based on the AIS method,which was implemented in the Monte Carlo program MCShield.The proposed method was validated using the VENUS-Ⅲ international benchmark problem and a self-shielding calculation example.The results from the VENUS-Ⅲ benchmark problem showed that the grid-AIS method achieved a significant reduction in the variance of the statistical errors of the MESH grids,decreasing from 1.08×10^(-2) to 3.84×10^(-3),representing a 64.00% reduction.This demonstrates that the grid-AIS method is effective in addressing global issues.The results of the selfshielding calculation demonstrate that the grid-AIS method produced accurate computational results.Moreover,the grid-AIS method exhibited a computational efficiency approximately one order of magnitude higher than that of the AIS method and approximately two orders of magnitude higher than that of the conventional Monte Carlo method. 展开更多
关键词 Monte Carlo Global variance reduction Reactor shielding Automatic importance sampling
下载PDF
Active Kriging-Based Adaptive Importance Sampling for Reliability and Sensitivity Analyses of Stator Blade Regulator 被引量:2
2
作者 Hong Zhang Lukai Song Guangchen Bai 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1871-1897,共27页
The reliability and sensitivity analyses of stator blade regulator usually involve complex characteristics like highnonlinearity,multi-failure regions,and small failure probability,which brings in unacceptable computi... The reliability and sensitivity analyses of stator blade regulator usually involve complex characteristics like highnonlinearity,multi-failure regions,and small failure probability,which brings in unacceptable computing efficiency and accuracy of the current analysismethods.In this case,by fitting the implicit limit state function(LSF)with active Kriging(AK)model and reducing candidate sample poolwith adaptive importance sampling(AIS),a novel AK-AIS method is proposed.Herein,theAKmodel andMarkov chainMonte Carlo(MCMC)are first established to identify the most probable failure region(s)(MPFRs),and the adaptive kernel density estimation(AKDE)importance sampling function is constructed to select the candidate samples.With the best samples sequentially attained in the reduced candidate samples and employed to update the Kriging-fitted LSF,the failure probability and sensitivity indices are acquired at a lower cost.The proposed method is verified by twomulti-failure numerical examples,and then applied to the reliability and sensitivity analyses of a typical stator blade regulator.Withmethods comparison,the proposed AK-AIS is proven to hold the computing advantages on accuracy and efficiency in complex reliability and sensitivity analysis problems. 展开更多
关键词 Markov chain Monte Carlo active Kriging adaptive kernel density estimation importance sampling
下载PDF
Importance Sampling Method in V-Space 被引量:4
3
作者 Jin Weiliang Professor, Department of Civil Engineering, Zhe Jiang University, Hangzhou 310027 《China Ocean Engineering》 SCIE EI 1997年第2期127-150,共24页
Based on the observation of importance sampling and second order information about the failure surface of a structure, an importance sampling region is defined in V-space which is obtained by rotating a U-space at the... Based on the observation of importance sampling and second order information about the failure surface of a structure, an importance sampling region is defined in V-space which is obtained by rotating a U-space at the point of maximum likelihood. The sampling region is a hyper-ellipsoid that consists of the sampling ellipse on each plane of main curvature in V-space. Thus, the sampling probability density function can be constructed by the sampling region center and ellipsoid axes. Several examples have shown the efficiency and generality of this method. 展开更多
关键词 structural reliability Monte-Carlo simulation importance sampling method failure probability maximum likelihood CURVATURE GRADIENT
下载PDF
DOA estimation of incoherently distributed sources using importance sampling maximum likelihood 被引量:1
4
作者 WU Tao DENG Zhenghong +2 位作者 HU Xiaoxiang LI Ao XU Jiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期845-855,共11页
In this paper, an importance sampling maximum likelihood(ISML) estimator for direction-of-arrival(DOA) of incoherently distributed(ID) sources is proposed. Starting from the maximum likelihood estimation description o... In this paper, an importance sampling maximum likelihood(ISML) estimator for direction-of-arrival(DOA) of incoherently distributed(ID) sources is proposed. Starting from the maximum likelihood estimation description of the uniform linear array(ULA), a decoupled concentrated likelihood function(CLF) is presented. A new objective function based on CLF which can obtain a closed-form solution of global maximum is constructed according to Pincus theorem. To obtain the optimal value of the objective function which is a complex high-dimensional integral,we propose an importance sampling approach based on Monte Carlo random calculation. Next, an importance function is derived, which can simplify the problem of generating random vector from a high-dimensional probability density function(PDF) to generate random variable from a one-dimensional PDF. Compared with the existing maximum likelihood(ML) algorithms for DOA estimation of ID sources, the proposed algorithm does not require initial estimates, and its performance is closer to CramerRao lower bound(CRLB). The proposed algorithm performs better than the existing methods when the interval between sources to be estimated is small and in low signal to noise ratio(SNR)scenarios. 展开更多
关键词 direction-of-arrival(DOA)estimation incoherently distributed(ID)sources importance sampling maximum likelihood(ISML) Monte Carlo random calculation
下载PDF
Application of Importance Sampling Method in Sliding Failure Simulation of Caisson Breakwaters
5
作者 王禹迟 王元战 +1 位作者 李青美 陈良志 《China Ocean Engineering》 SCIE EI CSCD 2016年第3期469-482,共14页
It is assumed that the storm wave takes place once a year during the design period, and Nhistories of storm waves are generated on the basis of wave spectrum corresponding to the N-year design period. The responses of... It is assumed that the storm wave takes place once a year during the design period, and Nhistories of storm waves are generated on the basis of wave spectrum corresponding to the N-year design period. The responses of the breakwater to the N histories of storm waves in the N-year design period are calculated by mass-spring-dashpot mode and taken as a set of samples. The failure probability of caisson breakwaters during the design period of N years is obtained by the statistical analysis of many sets of samples. It is the key issue to improve the efficiency of the common Monte Carlo simulation method in the failure probability estimation of caisson breakwaters in the complete life cycle. In this paper, the kernel method of importance sampling, which can greatly increase the efficiency of failure probability calculation of caisson breakwaters, is proposed to estimate the failure probability of caisson breakwaters in the complete life cycle. The effectiveness of the kernel method is investigated by an example. It is indicated that the calculation efficiency of the kernel method is over 10 times the common Monte Carlo simulation method. 展开更多
关键词 caisson breakwater complete life cycle failure probability importance sampling
下载PDF
A K-Means Clustering-Based Multiple Importance Sampling Algorithm for Integral Global Optimization
6
作者 Chen Wang Dong-Hua Wu 《Journal of the Operations Research Society of China》 EI CSCD 2023年第1期157-175,共19页
In this paper, we propose a K-means clustering-based integral level-value estimation algorithm to solve a kind of box-constrained global optimization problem. For this purpose, we introduce the generalized variance fu... In this paper, we propose a K-means clustering-based integral level-value estimation algorithm to solve a kind of box-constrained global optimization problem. For this purpose, we introduce the generalized variance function associated with the level-value of the objective function to be minimized. The variance function has a good property when Newton’s method is used to solve a variance equation resulting by setting the variance function to zero. We prove that the largest root of the variance equation is equal to the global minimum value of the corresponding optimization problem. Based on the K-means clustering algorithm, the multiple importance sampling technique is proposed in the implementable algorithm. The main idea of the cross-entropy method is used to update the parameters of sampling density function. The asymptotic convergence of the algorithm is proved, and the validity of the algorithm is verified by numerical experiments. 展开更多
关键词 Global optimization Generalized variance function Multiple importance sampling K-means clustering algorithm
原文传递
ANNEALED IMPORTANCE SAMPLING FOR ISING MODELS WITH MIXED BOUNDARY CONDITIONS
7
作者 Lexing Ying 《Journal of Computational Mathematics》 SCIE CSCD 2023年第3期542-550,共9页
This note introduces a method for sampling Ising models with mixed boundary conditions.As an application of annealed importance sampling and the Swendsen-Wang algorithm,the method adopts a sequence of intermediate dis... This note introduces a method for sampling Ising models with mixed boundary conditions.As an application of annealed importance sampling and the Swendsen-Wang algorithm,the method adopts a sequence of intermediate distributions that keeps the temperature fixed but turns on the boundary condition gradually.The numerical results show that the variance of the sample weights is relatively small. 展开更多
关键词 Ising model Annealed importance sampling Swendsen-Wang algorithm
原文传递
Neural Networks Combined with Importance Sampling Techniques for Reliability Evaluation of Explosive Initiating Device 被引量:10
8
作者 GONG Qi ZHANG Jianguo +1 位作者 TAN Chunlin WANG Cancan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第2期208-215,共8页
Concerning the issue of high-dimensions and low-failure probabilities including implicit and highly nonlinear limit state function, reliability analysis based on the directional importance sampling in combination with... Concerning the issue of high-dimensions and low-failure probabilities including implicit and highly nonlinear limit state function, reliability analysis based on the directional importance sampling in combination with the radial basis function (RBF) neural network is used, and the RBF neural network based on first-order reliability method (FORM) is to approximate the unknown implicit limit state functions and calculate the most probable point (MPP) with iterative algorithm. For good efficiency, based on the ideas that directional sampling reduces dimensionality and importance sampling focuses on the domain contributing to failure probability, the joint probability density function of importance sampling is constructed, and the sampling center is moved to MPP to ensure that more random sample points draw belong to the failure domain and the simulation efficiency is improved. Then the numerical example of initiating explosive devices for rocket booster explosive bolts demonstrates the applicability, versatility and accuracy of the approach compared with other reliability simulation algorithm. 展开更多
关键词 neural networks importance sampling explosive initiating device RELIABILITY NONLINEARITY
原文传递
Reliability Sensitivity Algorithm Based on Stratified Importance Sampling Method for Multiple Failure Modes Systems 被引量:8
9
作者 Zhang Feng Lu Zhenzhou +1 位作者 Cui Lijie Song Shufang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第6期660-669,共10页
Combining the advantages of the stratified sampling and the importance sampling, a stratified importance sampling method (SISM) is presented to analyze the reliability sensitivity for structure with multiple failure... Combining the advantages of the stratified sampling and the importance sampling, a stratified importance sampling method (SISM) is presented to analyze the reliability sensitivity for structure with multiple failure modes. In the presented method, the variable space is divided into several disjoint subspace by n-dimensional coordinate planes at the mean point of the random vec- tor, and the importance sampling functions in the subspaces are constructed by keeping the sampling center at the mean point and augmenting the standard deviation by a factor of 2. The sample size generated from the importance sampling function in each subspace is determined by the contribution of the subspace to the reliability sensitivity, which can be estimated by iterative simulation in the sampling process. The formulae of the reliability sensitivity estimation, the variance and the coefficient of variation are derived for the presented SISM. Comparing with the Monte Carlo method, the stratified sampling method and the importance sampling method, the presented SISM has wider applicability and higher calculation efficiency, which is demonstrated by numerical examples. Finally, the reliability sensitivity analysis of flap structure is illustrated that the SISM can be applied to engineering structure. 展开更多
关键词 multiple failure modes reliability sensitivity Monte Carlo simulation stratified sampling method importance sam-piing method stratified importance sampling method (SISM)
原文传递
Reliability and reliability sensitivity analysis of structure by combining adaptive linked importance sampling and Kriging reliability method 被引量:3
10
作者 Fuchao LIU Pengfei WEI +1 位作者 Changcong ZHOU Zhufeng YUE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第4期1218-1227,共10页
The application of reliability analysis and reliability sensitivity analysis methods to complicated structures faces two main challenges:small failure probability(typical less than 10-5)and time-demanding mechanical m... The application of reliability analysis and reliability sensitivity analysis methods to complicated structures faces two main challenges:small failure probability(typical less than 10-5)and time-demanding mechanical models.This paper proposes an improved active learning surrogate model method,which combines the advantages of the classical Active Kriging–Monte Carlo Simulation(AK-MCS)procedure and the Adaptive Linked Importance Sampling(ALIS)procedure.The proposed procedure can,on the one hand,adaptively produce a series of intermediate sampling density approaching the quasi-optimal Importance Sampling(IS)density,on the other hand,adaptively generate a set of intermediate surrogate models approaching the true failure surface of the rare failure event.Then,the small failure probability and the corresponding reliability sensitivity indices are efficiently estimated by their IS estimators based on the quasi-optimal IS density and the surrogate models.Compared with the classical AK-MCS and Active Kriging–Importance Sampling(AK-IS)procedure,the proposed method neither need to build very large sample pool even when the failure probability is extremely small,nor need to estimate the Most Probable Points(MPPs),thus it is computationally more efficient and more applicable especially for problems with multiple MPPs.The effectiveness and engineering applicability of the proposed method are demonstrated by one numerical test example and two engineering applications. 展开更多
关键词 Active learning Kriging model Adaptive linked importance sampling Reliability analysis Sensitivity analysis Small failure probability
原文传递
Accelerated testing for automated vehicles safety evaluation in cut-in scenarios based on importance sampling,genetic algorithm and simulation applications 被引量:3
11
作者 Yiming Xu Yajie Zou Jian Sun 《Journal of Intelligent and Connected Vehicles》 2018年第1期28-38,共11页
Purpose–It would take billions of miles’field road testing to demonstrate that the safety of automated vehicle is statistically significantly higher than the safety of human driving because that the accident of vehi... Purpose–It would take billions of miles’field road testing to demonstrate that the safety of automated vehicle is statistically significantly higher than the safety of human driving because that the accident of vehicle is rare event.Design/methodology/approach–This paper proposes an accelerated testing method for automated vehicles safety evaluation based on improved importance sampling(IS)techniques.Taking the typical cut-in scenario as example,the proposed method extracts the critical variables of the scenario.Then,the distributions of critical variables are statistically fitted.The genetic algorithm is used to calculate the optimal IS parameters by solving an optimization problem.Considering the error of distribution fitting,the result is modified so that it can accurately reveal the safety benefits of automated vehicles in the real world.Findings–Based on the naturalistic driving data in Shanghai,the proposed method is validated by simulation.The result shows that compared with the existing methods,the proposed method improves the test efficiency by 35 per cent,and the accuracy of accelerated test result is increased by 23 per cent.Originality/value–This paper has three contributions.First,the genetic algorithm is used to calculate IS parameters,which improves the efficiency of test.Second,the result of test is modified by the error correction parameter,which improves the accuracy of test result.Third,typical high-risk cut-in scenarios in China are analyzed,and the proposed method is validated by simulation. 展开更多
关键词 Genetic algorithm SIMULATION Automated vehicles importance sampling Lane changing Safety evaluation High-risk scenarios
原文传递
Modified filtered importance sampling for virtual spherical Gaussian lights
12
作者 Yusuke Tokuyoshi 《Computational Visual Media》 2016年第4期343-355,共13页
This paper proposes a modification of the filtered importance sampling method, and improves the quality of virtual spherical Gaussian light(VSGL)-based real-time glossy indirect illumination using this modification. T... This paper proposes a modification of the filtered importance sampling method, and improves the quality of virtual spherical Gaussian light(VSGL)-based real-time glossy indirect illumination using this modification. The original filtered importance sampling method produces large overlaps of and gaps between filtering kernels for high-frequency probability density functions(PDFs). This is because the size of the filtering kernel is determined using the PDF at the sampled center of the kernel. To reduce those overlaps and gaps, this paper determines the kernel size using the integral of the PDF within the filtering kernel. Our key insight is that these integrals are approximately constant, if kernel centers are sampled using stratified sampling. Therefore, an appropriate kernel size can be obtained by solving this integral equation. Using the proposed kernel size for filtered importance samplingbased VSGL generation, undesirable artifacts are significantly reduced with a negligibly small overhead. 展开更多
关键词 filtered importance sampling real-time rendering global illumination virtual point lights
原文传递
Sensitivity of Sample for Simulation-Based Reliability Analysis Methods 被引量:2
13
作者 Xiukai Yuan Jian Gu Shaolong Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第1期331-357,共27页
In structural reliability analysis,simulation methods are widely used.The statistical characteristics of failure probability estimate of these methods have been well investigated.In this study,the sensitivities of the... In structural reliability analysis,simulation methods are widely used.The statistical characteristics of failure probability estimate of these methods have been well investigated.In this study,the sensitivities of the failure probability estimate and its statistical characteristics with regard to sample,called‘contribution indexes’,are proposed to measure the contribution of sample.The contribution indexes in four widely simulation methods,i.e.,Monte Carlo simulation(MCS),importance sampling(IS),line sampling(LS)and subset simulation(SS)are derived and analyzed.The proposed contribution indexes of sample can provide valuable information understanding the methods deeply,and enlighten potential improvement of methods.It is found that the main differences between these investigated methods lie in the contribution indexes of the safety samples,which are the main factors to the efficiency of the methods.Moreover,numerical examples are used to validate these findings. 展开更多
关键词 Reliability analysis Monte Carlo simulation importance sampling line sampling subset simulation
下载PDF
Simulation method for reliability of TT&C mission with high redundancy and small time horizon 被引量:2
14
作者 Shuangwei Xu Xiaoyue Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期943-948,共6页
The tracking, telemetry and command (TT&C) mission is extremely reliable for its characters of small time horizon and high redundancy. The combined forcing and failure biasing (CFFB) method that is usually used f... The tracking, telemetry and command (TT&C) mission is extremely reliable for its characters of small time horizon and high redundancy. The combined forcing and failure biasing (CFFB) method that is usually used for simulating the unreliability of the highly dependable mission system seems not so efficient for the TT&C mission. The concept about the importance of failure transition is proposed based on the logical relationship between TT&C mission and its involved resources. Then, the importance is used for readjusting the transition rate of the failure transition when using the forcing and failure biasing during the simulation. Examples show that the improved CFFB method can evidently increase the occurrence of the TT&C mission failure event and decrease the sample variance. More redundancy of the TT&C mission leads to the improved CFFB method more efficient. 展开更多
关键词 tracking telemetry and command (TT&C) mission high redundancy importance sampling FORCING failure biasing.
下载PDF
NUMERICAL SIMULATION ALGORITHM FOR RELIABILITY ANALYSIS OF COMPLEX STRUCTURAL SYSTEM BASED ON INTELLIGENT OPTIMIZATION 被引量:1
15
作者 LUE Zhenzhou LIU Chengli FU Lin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期67-71,共5页
An efficient importance sampling algorithm is presented to analyze reliability of complex structural system with multiple failure modes and fuzzy-random uncertainties in basic variables and failure modes. In order to ... An efficient importance sampling algorithm is presented to analyze reliability of complex structural system with multiple failure modes and fuzzy-random uncertainties in basic variables and failure modes. In order to improve the sampling efficiency, the simulated annealing algorithm is adopted to optimize the density center of the importance sampling for each failure mode, and results that the more significant contribution the points make to fuzzy failure probability, the higher occurrence possibility the points are sampled. For the system with multiple fuzzy failure modes, a weighted and mixed importance sampling function is constructed. The contribution of each fuzzy failure mode to the system failure probability is represented by the appropriate factors, and the efficiency of sampling is improved furthermore. The variances and the coefficients of variation are derived for the failure probability estimations. Two examples are introduced to illustrate the rationality of the present method. Comparing with the direct Monte-Carlo method, the improved efficiency and the precision of the method are verified by the examples. 展开更多
关键词 importance sampling Simulated annealing algorithm Randomness Fuzziness
下载PDF
Time-Dependent Reliability Analysis of Offshore Structures
16
作者 Tang, LM Xi, X 《China Ocean Engineering》 SCIE EI 1997年第2期151-160,共10页
During the life of an offshore structure, its structural strength declines due to various kinds of damages related to the time factor. In this paper, four major kinds of damages, including damages caused by fatigue, d... During the life of an offshore structure, its structural strength declines due to various kinds of damages related to the time factor. In this paper, four major kinds of damages, including damages caused by fatigue, dent, corrosion and marine life, are discussed. Based on these analyses, formulas for the evaluation of the damaged structure reliability are derived. Furthermore the computer program ISM for the analysis of structural reliability is developed by the use of Advanced First Order Second Moment method and Monte-Carlo Importance Sampling method. The reliability of a turbular joint and a beam are studied as numerical examples. The results show that the theory and the analysis method given in this paper are reasonable and effective. 展开更多
关键词 structural reliability analysis fatigue damage dent damage corrosion damage Monte-Carlo importance sampling method
下载PDF
On Solving a System of Volterra Integral Equations with Relaxed Monte Carlo Method
17
作者 Zhimin Hong Xiangzhong Fang +1 位作者 Zaizai Yan Hui Hao 《Journal of Applied Mathematics and Physics》 2016年第7期1315-1320,共7页
A random simulation method was used for treatment of systems of Volterra integral equations of the second kind. Firstly, a linear algebra system was obtained by discretization using quadrature formula. Secondly, this ... A random simulation method was used for treatment of systems of Volterra integral equations of the second kind. Firstly, a linear algebra system was obtained by discretization using quadrature formula. Secondly, this algebra system was solved by using relaxed Monte Carlo method with importance sampling and numerical approximation solutions of the integral equations system were achieved. It is theoretically proved that the validity of relaxed Monte Carlo method is based on importance sampling to solve the integral equations system. Finally, some numerical examples from literatures are given to show the efficiency of the method. 展开更多
关键词 Systems of Volterra Integral Equations Quadrature Formula Relaxed Monte Carlo Method importance sampling
下载PDF
Efficient SRAM yield optimization with mixture surrogate modeling
18
作者 蒋中建 叶佐昌 王燕 《Journal of Semiconductors》 EI CAS CSCD 2016年第12期64-69,共6页
Largely repeated cells such as SRAM cells usually require extremely low failure-rate to ensure a mod- erate chi yield. Though fast Monte Carlo methods such as importance sampling and its variants can be used for yield... Largely repeated cells such as SRAM cells usually require extremely low failure-rate to ensure a mod- erate chi yield. Though fast Monte Carlo methods such as importance sampling and its variants can be used for yield estimation, they are still very expensive if one needs to perform optimization based on such estimations. Typ- ically the process of yield calculation requires a lot of SPICE simulation. The circuit SPICE simulation analysis accounted for the largest proportion of time in the process yield calculation. In the paper, a new method is proposed to address this issue. The key idea is to establish an efficient mixture surrogate model. The surrogate model is based on the design variables and process variables. This model construction method is based on the SPICE simulation to get a certain amount of sample points, these points are trained for mixture surrogate model by the lasso algorithm. Experimental results show that the proposed model is able to calculate accurate yield successfully and it brings significant speed ups to the calculation of failure rate. Based on the model, we made a further accelerated algo- rithm to further enhance the speed of the yield calculation. It is suitable for high-dimensional process variables and multi-performance applications. 展开更多
关键词 yield optimization process variations design variations mixture surrogate model statistical analysis importance sampling
原文传递
Deep Reinforcement Learning with Fuse Adaptive Weighted Demonstration Data
19
作者 Baofu Fang Taifeng Guo 《国际计算机前沿大会会议论文集》 2022年第1期163-177,共15页
Traditional multi-agent deep reinforcement learning has difficulty obtaining rewards,slow convergence,and effective cooperation among agents in the pretraining period due to the large joint state space and sparse rewa... Traditional multi-agent deep reinforcement learning has difficulty obtaining rewards,slow convergence,and effective cooperation among agents in the pretraining period due to the large joint state space and sparse rewards for action.Therefore,this paper discusses the role of demonstration data in multiagent systems and proposes a multi-agent deep reinforcement learning algorithm from fuse adaptive weight fusion demonstration data.The algorithm sets the weights according to the performance and uses the importance sampling method to bridge the deviation in the mixed sampled data to combine the expert data obtained in the simulation environment with the distributed multi-agent reinforcement learning algorithm to solve the difficult problem.The problem of global exploration improves the convergence speed of the algorithm.The results in the RoboCup2D soccer simulation environment show that the algorithm improves the ability of the agent to hold and shoot the ball,enabling the agent to achieve a higher goal scoring rate and convergence speed relative to demonstration policies and mainstream multi-agent reinforcement learning algorithms. 展开更多
关键词 Multiagent deep reinforcement learning Exploration Offline reinforcement learning importance sampling
原文传递
A Bayesian approach for integrating multilevel priors and data for aerospace system reliability assessment 被引量:5
20
作者 Jian GUO Zhaojun LI Thomas KEYSER 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第1期41-53,共13页
This paper investigates Bayesian methods for aerospace system reliability analysis using various sources of test data and expert knowledge at both subsystem and system levels. Four sce- narios based on available infor... This paper investigates Bayesian methods for aerospace system reliability analysis using various sources of test data and expert knowledge at both subsystem and system levels. Four sce- narios based on available information for the priors and test data of a system and/or subsystems are studied using specific Bayesian inference techniques. This paper proposes the Bayesian melding method for integrating subsystem-level priors with system-level priors for both system- and subsystem-level reliability analysis. System and subsystem reliability outcomes are compared under different scenarios. Computational challenges for posterior inferences using the sophisticated Bayesian melding method are addressed using Markov Chain Monte Carlo (MCMC) and adaptive Sam- piing Importance Re-sampling (SIR) methods. A case study with simulation results illustrates the applications of the proposed methods and provides insights for aerospace system reliability analysis using available multilevel information. 展开更多
关键词 Bayesian inference Bayesian melding Multilevel information Markov Chain Monte Carlo (MCMC) sampling importance Resampling (SIR) System reliability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部