期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Using FCM to Select Samples in Semi-Supervised Classification
1
作者 Chao Zhang Jian-Mei Cheng Liang-Zhong Yi 《Journal of Electronic Science and Technology》 CAS 2012年第2期130-134,共5页
For a semi-supervised classification system, with the increase of the training samples number, the system needs to be continually updated. As the size of samples set is increasing, many unreliable samples will also be... For a semi-supervised classification system, with the increase of the training samples number, the system needs to be continually updated. As the size of samples set is increasing, many unreliable samples will also be increased. In this paper, we use fuzzy c-means (FCM) clustering to take out some samples that are useless, and extract the intersection between the original training set and the cluster after using FCM clustering. The intersection between every class and cluster is reliable samples which we are looking for. The experiment result demonstrates that the superiority of the proposed algorithm is remarkable. 展开更多
关键词 Fuzzy c-means clustering fuzzy k-nearest neighbor classifier instance selection.
下载PDF
基于敏感特征选择与流形学习维数约简的故障诊断 被引量:41
2
作者 苏祖强 汤宝平 姚金宝 《振动与冲击》 EI CSCD 北大核心 2014年第3期70-75,共6页
针对故障诊断中特征集包含非敏感特征和维数过高的问题,提出基于特征选择(Feature Selection,FS)与流形学习维数约简的故障诊断方法。提出一种改进的核空间距离测度特征选择方法(Improved Kernel Distance Measurement Feature Selectio... 针对故障诊断中特征集包含非敏感特征和维数过高的问题,提出基于特征选择(Feature Selection,FS)与流形学习维数约简的故障诊断方法。提出一种改进的核空间距离测度特征选择方法(Improved Kernel Distance Measurement Feature Selection,IKDM-FS),在核空间中计算样本类间距离和类内散度,优选出使样本类间距大、类内散度小的特征,并根据特征的敏感程度对特征进行加权。通过线性局部切空间排列算法(Linear Local Tangent Space Alignment,LLTSA)对由敏感特征组成的特征子集进行特征融合,提取出对故障分类更加敏感的融合特征,并输入加权k最近邻分类器(Weighted k Nearest Neighbor Classifier,WKNNC)进行故障识别。WKNNC具有比k最近邻分类器(k Nearest Neighbor Classifier,KNNC)更加稳定的识别精度。最后,通过滚动轴承故障模拟实验验证了该方法的有效性。 展开更多
关键词 故障诊断 特征选择 改进的核空间距离测度 线性局部切空间排列 加权k最近邻分类器
下载PDF
一种基于改进近邻分类器的人脸识别方法 被引量:3
3
作者 邱天爽 杨春晖 《信号处理》 CSCD 北大核心 2008年第1期54-57,共4页
在人脸识别研究问题中,传统的K-近邻分类器是仅基于一种测度进行分类的。但是,这种仅基于一种测度进行分类的方法没有充分考虑不同特征间的相似信息,因而往往分类不够准确。针对这个问题,本文提出了基于距离和角度两种测度联合分类的改... 在人脸识别研究问题中,传统的K-近邻分类器是仅基于一种测度进行分类的。但是,这种仅基于一种测度进行分类的方法没有充分考虑不同特征间的相似信息,因而往往分类不够准确。针对这个问题,本文提出了基于距离和角度两种测度联合分类的改进近邻分类器。即在距离测度的基础上融合cosine分类器的角度信息作为分类测度,同时在分类过程中运用模糊识别,以改善传统近邻分类器的分类效果。经计算机仿真数据实验,表明这种改进的近邻分类器与Gabor小波的结合,提高了人脸识别率。 展开更多
关键词 GABOR小波 改进近邻 距离 角度
下载PDF
多分类器投票法预测植物蛋白质亚细胞定位
4
作者 王瑞星 《科技通报》 北大核心 2016年第11期63-66,79,共5页
选取伪氨基酸组分、氨基酸频次的ID向量、N端信号的ID向量作为参数,利用多分类器投票法对植物11类蛋白质亚细胞定位进行预测。得到的预测精度已高达5折交叉检验的76.4%和77.0%,并且预测方法简单易实现。
关键词 离散增量 改进的欧氏距离 多分类器投票法 K近邻方法
下载PDF
一种用于非平衡数据分类的集成学习模型 被引量:5
5
作者 焦盛岚 杨炳儒 +1 位作者 翟云 赵万里 《计算机工程与应用》 CSCD 2012年第29期119-123,219,共6页
针对非平衡数据分类问题,提出了一种改进的SVM-KNN分类算法,在此基础上设计了一种集成学习模型。该模型采用限数采样方法对多数类样本进行分割,将分割后的多数类子簇与少数类样本重新组合,利用改进的SVM-KNN分别训练,得到多个基本分类器... 针对非平衡数据分类问题,提出了一种改进的SVM-KNN分类算法,在此基础上设计了一种集成学习模型。该模型采用限数采样方法对多数类样本进行分割,将分割后的多数类子簇与少数类样本重新组合,利用改进的SVM-KNN分别训练,得到多个基本分类器,对各个基本分类器进行组合。采用该模型对UCI数据集进行实验,结果显示该模型对于非平衡数据分类有较好的效果。 展开更多
关键词 非平衡数据 集成学习模型 基本分类器 改进的支持向量机-K最近邻(SVM-KNN) UCI数据集
下载PDF
基于故障敏感分量和改进K近邻分类器的故障状态识别 被引量:2
6
作者 王化玲 刘志远 +2 位作者 赵欣洋 晁战云 刘小峰 《重庆大学学报》 EI CAS CSCD 北大核心 2020年第12期33-40,共8页
针对故障状态下的滚动轴承振动信号非线性非平稳性强、噪声干扰大导致的故障敏感特征提取难的问题,在对轴承振动信号进行局域均值分解(local mean decomposition,LMD)的基础上,提出了一种基于故障敏感分量的特征提取与改进K近邻分类器(K... 针对故障状态下的滚动轴承振动信号非线性非平稳性强、噪声干扰大导致的故障敏感特征提取难的问题,在对轴承振动信号进行局域均值分解(local mean decomposition,LMD)的基础上,提出了一种基于故障敏感分量的特征提取与改进K近邻分类器(K-nearest neighbor classifier,KNNC)的故障状态辨识方法。该方法采用相关系数法对LMD分解出的振动分量进行故障敏感性的量化表征,然后对筛选出的信号分量进行时域/频域的特征提取,构建不同故障状态下的特征样本集。为加快故障状态识别速度,排除不良样本的影响,提出一种基于二分K均值聚类的改进KNNC算法,精简了大容量的训练样本,有效去除不良特征样本和干扰点。实验结果表明,以敏感分量特征作为输入的改进KNNC算法能够快速准确地识别轴承不同故障状态。 展开更多
关键词 局域均值分解 故障敏感分量 改进K近邻分类器 故障诊断
下载PDF
A Two-Stage Vehicle Type Recognition Method Combining the Most Effective Gabor Features 被引量:5
7
作者 Wei Sun Xiaorui Zhang +2 位作者 Xiaozheng He Yan Jin Xu Zhang 《Computers, Materials & Continua》 SCIE EI 2020年第12期2489-2510,共22页
Vehicle type recognition(VTR)is an important research topic due to its significance in intelligent transportation systems.However,recognizing vehicle type on the real-world images is challenging due to the illuminatio... Vehicle type recognition(VTR)is an important research topic due to its significance in intelligent transportation systems.However,recognizing vehicle type on the real-world images is challenging due to the illumination change,partial occlusion under real traffic environment.These difficulties limit the performance of current state-of-art methods,which are typically based on single-stage classification without considering feature availability.To address such difficulties,this paper proposes a two-stage vehicle type recognition method combining the most effective Gabor features.The first stage leverages edge features to classify vehicles by size into big or small via a similarity k-nearest neighbor classifier(SKNNC).Further the more specific vehicle type such as bus,truck,sedan or van is recognized by the second stage classification,which leverages the most effective Gabor features extracted by a set of Gabor wavelet kernels on the partitioned key patches via a kernel sparse representation-based classifier(KSRC).A verification and correction step based on minimum residual analysis is proposed to enhance the reliability of the VTR.To improve VTR efficiency,the most effective Gabor features are selected through gray relational analysis that leverages the correlation between Gabor feature image and the original image.Experimental results demonstrate that the proposed method not only improves the accuracy of VTR but also enhances the recognition robustness to illumination change and partial occlusion. 展开更多
关键词 Vehicle type recognition improved Canny algorithm Gabor filter k-nearest neighbor classification grey relational analysis kernel sparse representation two-stage classification
下载PDF
A NOVEL METHOD FOR NETWORK WORM DETECTION BASED ON WAVELET PACKET ANALYSIS
8
作者 廖明涛 张德运 侯琳 《Journal of Pharmaceutical Analysis》 SCIE CAS 2006年第2期97-101,共5页
Objective To detect unknown network worm at its early propagation stage. Methods On the basis of characteristics of network worm attack, the concept of failed connection flow (FCT) was defined. Based on wavelet packet... Objective To detect unknown network worm at its early propagation stage. Methods On the basis of characteristics of network worm attack, the concept of failed connection flow (FCT) was defined. Based on wavelet packet analysis of FCT time series, this method computed the energy associated with each wavelet packet of FCT time series, transformed the FCT time series into a series of energy distribution vector on frequency domain, then a trained K-nearest neighbor (KNN) classifier was applied to identify the worm. Results The experiment showed that the method could identify network worm when the worm started to scan. Compared to theoretic value, the identification error ratio was 5.69%. Conclusion The method can detect unknown network worm at its early propagation stage effectively. 展开更多
关键词 worm detection wavelet packet analysis k-nearest neighbor classifier
下载PDF
联合改进拉普拉斯特征映射和k-近邻分类器的高光谱影像分类 被引量:8
9
作者 孙伟伟 刘春 李巍岳 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2015年第9期1151-1156,共6页
高光谱影像利用流形学习降维和分类器分类时往往忽略了影像本身的空间特征,这将严重制约最终的分类精度。因此,本文以拉普拉斯特征映射和k-近邻分类器为例,提出了自适应加权综合核距离来同时改进流形学习方法和分类器方法,目的在于改善... 高光谱影像利用流形学习降维和分类器分类时往往忽略了影像本身的空间特征,这将严重制约最终的分类精度。因此,本文以拉普拉斯特征映射和k-近邻分类器为例,提出了自适应加权综合核距离来同时改进流形学习方法和分类器方法,目的在于改善高光谱影像的分类结果。自适应加权综合核距离同时考虑高光谱影像的光谱特征和空间特征,且能够针对每个像素点自动估算空间邻域来描述空间特征。通过Indian和PaviaU两个数据集来分析和验证本文提出的组合策略,实验结果表明,本文提出的组合策略得到的分类结果明显优于常规拉普拉斯特征映射降维和常规k-近邻分类的组合策略,能够得到更高精度的分类结果。 展开更多
关键词 高光谱分类 非线性降维 改进拉普拉斯特征映射 改进k-近邻分类 自适应加权综合核距离
原文传递
基于改进的K最近邻分类器的风机故障诊断 被引量:1
10
作者 吴斌 奚立峰 +1 位作者 范思遐 王加祥 《机械设计与研究》 CSCD 北大核心 2016年第5期163-167,174,共6页
为提高风机故障的预警诊断准确度,提出了一种基于改进的K最近邻分类器的故障诊断方法。通过引入核函数主元分析,计算各特征向量的贡献度,对欧式距离进行加权,弥补传统K最近邻分类器同贡献权重分配的缺陷。样本训练时,依据各特征向量的... 为提高风机故障的预警诊断准确度,提出了一种基于改进的K最近邻分类器的故障诊断方法。通过引入核函数主元分析,计算各特征向量的贡献度,对欧式距离进行加权,弥补传统K最近邻分类器同贡献权重分配的缺陷。样本训练时,依据各特征向量的贡献数值分配权重。该方法被用于风机故障诊断。实验结果表明该方法增强了诊断准确度,便于工程应用。 展开更多
关键词 风机 改进的K最近邻分类器 核主元分析 故障诊断
原文传递
Actual TDoA-based augmentation system for enhancing cybersecurity in ADS-B
11
作者 Ahmed AbdelWahab ELMARADY Kamel RAHOUMA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第2期217-228,共12页
Currently, cybersecurity and cyber resilience are emerging and urgent issues in nextgeneration air traffic surveillance systems, which depend primarily on Automatic Dependent Surveillance-Broadcast(ADS-B) owing to its... Currently, cybersecurity and cyber resilience are emerging and urgent issues in nextgeneration air traffic surveillance systems, which depend primarily on Automatic Dependent Surveillance-Broadcast(ADS-B) owing to its low cost and high accuracy. Unfortunately, ADS-B is prone to cyber-attacks. To verify the ADS-B positioning data of aircraft, multilateration(MLAT)techniques that use Time Differences of Arrivals(TDoAs) have been proposed. MLAT exhibits low accuracy in determining aircraft positions. Recently, a novel technique using a theoretically calculated TDoA fingerprint map has been proposed. This technique is less dependent on the geometry of sensor deployment and achieves better accuracy than MLAT. However, the accuracy of the existing technique is not sufficiently precise for determining aircraft positions and requires a long computation time. In contrast, this paper presents a reliable surveillance framework using an Actual TDoA-Based Augmentation System(ATBAS). It uses historically recorded real-data from the OpenSky network to train our TDoA fingerprint grid network. Our results show that the accuracy of the proposed ATBAS framework in determining the aircraft positions is significantly better than those of the MLAT and expected TDoA techniques by 56.93% and 48.86%, respectively. Additionally, the proposed framework reduced the computation time by 77% compared with the expected TDoA technique. 展开更多
关键词 ADS-B CYBERSECURITY Cyber resilience k-nearest neighbors(k-NN)classifier Machine learning Multilateration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部